

Distributed Algorithms

Distributed Algorithms
An Intuitive Approach

Wan Fokkink

The MIT Press
Cambridge, Massachusetts
London, England

c© 2013 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher.

MIT Press books may be purchased at special quantity discounts for business or sales
promotionaluse.For information,pleaseemailspecial sales@mitpress.mit.edu
or write to Special Sales Department, The MIT Press, 55 Hayward Street, Cam-
bridge, MA 02142.

This book was set in Amsterdam by the author. Printed and bound in the United
States of America.

Library of Congress Cataloging-in-Publication Data

Fokkink, Wan, 1965–
Distributed algorithms: an intuitive approach / Wan Fokkink

p. cm
Includes bibliographical references and index.
ISBN 978-0-262-02677-2 (hardcover: alk. paper)
1. Distributed algorithms—Textbooks. I. Title.
QA76.58.F647 2013
004′.36—dc23

2013015173

10 9 8 7 6 5 4 3 2 1

Contents

Preface . ix

1 Introduction . 1

I Message Passing

2 Preliminaries . 7

3 Snapshots . 13
3.1 Chandy-Lamport algorithm . 14
3.2 Lai-Yang algorithm . 15

4 Waves . 19
4.1 Traversal algorithms . 19
4.2 Tree algorithm . 23
4.3 Echo algorithm . 24

5 Deadlock Detection . 27
5.1 Wait-for graphs . 27
5.2 Bracha-Toueg algorithm . 29

6 Termination Detection . 37
6.1 Dijkstra-Scholten algorithm . 38
6.2 Weight-throwing algorithm . 39
6.3 Rana’s algorithm . 40
6.4 Safra’s algorithm . 42

7 Garbage Collection . 47
7.1 Reference counting . 47
7.2 Garbage collection implies termination detection 50
7.3 Tracing . 51

vi Contents

8 Routing . 53
8.1 Chandy-Misra algorithm. 53
8.2 Merlin-Segall algorithm . 55
8.3 Toueg’s algorithm . 58
8.4 Frederickson’s algorithm . 61
8.5 Packet switching . 65
8.6 Routing on the Internet . 67

9 Election . 73
9.1 Election in rings . 73
9.2 Tree election algorithm . 77
9.3 Echo algorithm with extinction . 79
9.4 Minimum spanning trees . 80

10 Anonymous Networks . 87
10.1 Impossibility of election in anonymous rings . 87
10.2 Probabilistic algorithms . 88
10.3 Itai-Rodeh election algorithm for rings . 89
10.4 Echo algorithm with extinction for anonymous networks 91
10.5 Computing the size of an anonymous ring is impossible 93
10.6 Itai-Rodeh ring size algorithm . 94
10.7 Election in IEEE 1394 . 96

11 Synchronous Networks . 101
11.1 A simple synchronizer . 101
11.2 Awerbuch’s synchronizer . 102
11.3 Bounded delay networks with local clocks . 105
11.4 Election in anonymous rings with bounded expected delay 106

12 Crash Failures . 111
12.1 Impossibility of 1-crash consensus . 112
12.2 Bracha-Toueg crash consensus algorithm . 113
12.3 Failure detectors . 115
12.4 Consensus with a weakly accurate failure detector 116
12.5 Chandra-Toueg algorithm . 116

13 Byzantine Failures . 121
13.1 Bracha-Toueg Byzantine consensus algorithm 121
13.2 Mahaney-Schneider synchronizer . 125
13.3 Lamport-Shostak-Pease broadcast algorithm . 127
13.4 Lamport-Shostak-Pease authentication algorithm 130

14 Mutual Exclusion . 135
14.1 Ricart-Agrawala algorithm . 135
14.2 Raymond’s algorithm . 137
14.3 Agrawal-El Abbadi algorithm . 140

Contents vii

II Shared Memory

15 Preliminaries . 145

16 Mutual Exclusion II . 147
16.1 Peterson’s algorithm . 147
16.2 Bakery algorithm . 150
16.3 N registers are required . 152
16.4 Fischer’s algorithm . 152
16.5 Test-and-test-and-set lock . 153
16.6 Queue locks . 155

17 Barriers . 161
17.1 Sense-reversing barrier . 161
17.2 Combining tree barrier . 162
17.3 Tournament barrier . 165
17.4 Dissemination barrier . 168

18 Self-Stabilization . 171
18.1 Dijkstra’s token ring for mutual exclusion . 171
18.2 Arora-Gouda spanning tree algorithm . 175
18.3 Afek-Kutten-Yung spanning tree algorithm . 177

19 Online Scheduling . 181
19.1 Jobs . 181
19.2 Schedulers . 182
19.3 Resource access control . 188

Pseudocode Descriptions . 193

References . 221

Index . 225

Preface

This textbook is meant for a course on distributed algorithms for senior-level under-
graduate or graduate students in computer science or software engineering, and as
a quick reference for researchers in the field. It focuses on fundamental algorithms
and results in distributed computing. The distributed algorithms treated in this book
are largely “classics” that were selected mainly because they are instructive with re-
gard to the algorithmic design of distributed systems or shed light on key issues in
distributed computing and concurrent programming.

The book consists of two parts. The first part is devoted to message-passing com-
munication. It evolved from a course at the VU University Amsterdam, which was
originally based on the textbook Introduction to Distributed Algorithms by Gerard
Tel. The second part is devoted to shared-memory architectures.

There are two very different ways to structure an algorithms course. One way
is to discuss algorithms and their analysis in great detail. The advantage of this ap-
proach is that students may gain deep insight into the algorithms and at the same
time experience in mathematical reasoning on their correctness and performance.
Another way is to discuss algorithms and their correctness in an informal manner,
and let students get acquainted with an algorithm from different angles by means of
examples and exercises, without a need to understand the intricacies of the respective
model and its underlying assumptions. Mathematical argumentations, which can be
a stumbling block for many students, are thus avoided. An additional advantage is
that a large number of algorithms can be discussed within a relatively short time,
providing students with many different views on and solutions to challenges in dis-
tributed computing. In ten years of teaching distributed algorithms I have converged
to the latter approach, most of all because the students in my lectures tend to have
hands-on experience and practical interests with regard to distributed systems. As a
result, the learning objective of my course has been algorithmic thought rather than
proofs and logic.

This book provides a Cook’s tour of distributed algorithms. This phrase, meaning
a rapid but extensive survey, refers to Thomas Cook, the visionary tour operator (and
not the great explorer James Cook). Accordingly, this book intends to be a travel
guide through the world of distributed algorithms. A notable difference from other

x Preface

books in this area is that it does not emphasize correctness proofs. Algorithms are
explained by means of brief informal descriptions, illuminating examples and exer-
cises. The exercises have been carefully selected to make students well-acquainted
with the intricacies of distributed algorithms. Proof sketches, arguing the correctness
of an algorithm or explaining the idea behind a fundamental result, are presented at
a rather superficial level.

A thorough correctness proof, of course, is important in order to understand an
algorithm in full detail. My research area is automated correctness proofs of dis-
tributed algorithms and communication protocols; I wrote two textbooks devoted
to this topic. In the current textbook, however, intuition prevails. I recommend that
readers who want to get a more detailed description of a distributed algorithm in
this book consult the original paper, mentioned in the bibliographical notes at the
end of each chapter. Moreover, pseudocode descriptions of a considerable number of
algorithms are provided as an appendix.

I gratefully acknowledge the support of Helle Hvid Hansen, Jeroen Ketema, and
David van Moolenbroek with providing detailed solutions to the exercises in this
book, and the comments by students on early versions of these lecture notes, in par-
ticular from Tessel Bogaard, István Haller, Jan van der Lugt, and Armando Miraglia.
Special thanks go to Gerard Tel for his useful feedback over the years.

Wan Fokkink

Amsterdam, July 2013

1

Introduction

In this age of the Internet, wide and local area networks, and multicore laptops, the
importance of distributed computing is crystal clear. The fact that you have opened
this book means that no further explanation is needed to convince you of this point.
The majority of modern-day system designers, system programmers, and ICT sup-
port staff must have a good understanding of concurrent programming. This, how-
ever, is easier said than done.

An algorithm is a step-by-step procedure to solve a particular problem on a com-
puter. To become a skilled programmer, it is essential to have good insight into algo-
rithms. Every computer science degree program offers one or more courses on basic
algorithms, typically for searching and sorting, pattern recognition, and finding short-
est paths in graphs. There, students learn how to detect such subproblems within their
computer programs and solve them effectively. Moreover, they are trained to think al-
gorithmically, to reason about the correctness of algorithms, and to perform a simple
complexity analysis.

Distributed computing is very different from and considerably more complex
than a uniprocessor setting, because executions at the nodes in a distributed system
are interleaved. When two nodes can concurrently perform events, it cannot be pre-
dicted which of the events will happen first in time. This gives rise, for instance, to
so-called race conditions; if two messages are traveling to the same node in the net-
work, different behavior may occur depending on which of the messages reaches its
destination first. Distributed systems are therefore inherently nondeterministic: run-
ning a system twice from the same initial configuration may yield different results.
And the number of reachable configurations of a distributed system tends to grow
exponentially with respect to its number of nodes.

Another important distinction between distributed and uniprocessor computing
is the fact that the nodes in a distributed system in general do not have up-to-date
knowledge of the global state of the system. They are aware of their own local states,
but not always of the local states at other nodes or of the messages in transit. For ex-
ample, termination detection becomes an issue. It must be determined that all nodes
in the system have terminated; and even if this is the case, there may still be a mes-
sage in transit that will make the receiving node active again.

2 1 Introduction

This book offers a wide range of basic algorithms for key challenges in dis-
tributed systems, such as termination detection, or letting the nodes in a distributed
network together build a snapshot of a global system state. The main aim is to pro-
vide students with an algorithmic frame of mind so that they can recognize and solve
fundamental problems in distributed computing. They are offered a bird’s-eye view
on such problems from many different angles, as well as handwaving correctness
arguments and back-of-the-envelope complexity calculations.

The two main communication paradigms for distributed systems are message
passing, in which nodes send messages to each other via channels, and shared mem-
ory, in which different execution threads can read and write to the same memory
locations. This book is split into two parts, dedicated to these two communication
paradigms. The remainder of this chapter presents some preliminaries that are appli-
cable to both frameworks.

Sets

As usual, S1 ∪ S2, S1\S1 and S1 ⊆ S2 denote set union, difference and inclusion;
s ∈ S means that s is an element of the set S. The sets of natural and real numbers
are denoted with N and R. The Booleans consist of the elements true and false.
A set may be written as {· · · | · · · }, where to the left of | the elements in the set
are described, and to the right the property that they should satisfy is identified. For
example, {n ∈ N | n > 5} represents the set of natural numbers greater than 5. The
empty set is denoted by ∅. For any finite set S, |S| denotes its number of elements.

Complexity measures

Complexity measures state how resource consumption (messages, time, space) grows
in relation to input size. For example, if an algorithm has a worst-case message com-
plexity of O(n2), then for an input of size n, the algorithm in the worst case takes in
the order of n2 messages, give or take a constant.

Let f, g : N → R>0, meaning that the functions f and g map natural numbers
to positive real numbers. We write f = O(g) if f is bounded from above by g,
multiplied with some positive constant:

f = O(g) if, for some C > 0, f(n) ≤ C·g(n) for all n ∈ N.

Likewise, f = Ω(g) means that f is bounded by g from below, multiplied with some
positive constant:

f = Ω(g) if, for some C > 0, f(n) ≥ C·g(n) for all n ∈ N.

Finally, f = Θ(g) means that f is bounded by g from above as well as below:

f = Θ(g) if f = O(g) and f = Ω(g).

So if an algorithm has, say, a worst-case message complexity of Θ(n2), then this
upper bound is sharp.

1 Introduction 3

Example 1.1 Let a, b > 0 be constants.

– na = O(nb) if a ≤ b.
– na = O(bn) if b > 1.
– loga n = O(nb) for all a, b.

Divide-and-conquer algorithms, which recursively divide a problem into smaller
subproblems until they are simple enough to be solved directly, typically have a
logarithm in their time complexity. The reason is that dividing a problem of input
size 2k into subproblems of size 1 takes k steps, and k = log2 2

k.
One can write O(log n) instead of O(loga n). Namely, by definition, loga a

n =
n, which implies aloga n = n. So

aloga b· logb n = blogb n = n.

Therefore, loga b· logb n = loga n. So logb n = O(loga n) for all a, b > 0.
Complexity measures will sometimes use the notations
a� and �a, meaning

the largest integer k such that k ≤ a, and the smallest integer � such that � ≥ a,
respectively.

Resource consumption of an execution of a distributed algorithm can be mea-
sured in several ways.

• Message complexity: the total number of messages exchanged.
• Bit complexity: the total number of bits exchanged.
• Time complexity: the amount of time required to complete the execution.
• Space complexity: the total amount of space needed for the processes.

Part I, on the message-passing framework, focuses mostly on message complexity.
Bit complexity is interesting only when messages can be very long. In the analysis of
time complexity we assume that event processing takes no time, and that a message
is received at most one time unit after it is sent.

Different executions may give rise to different consumption of resources. We
consider worst- and average-case complexity, the latter with some probability distri-
bution over all executions.

Orders

A (strict) order on a set S is a binary relation between elements of S that is irreflexive,
asymmetric and transitive, meaning that for all a, b, c ∈ S: a < a does not hold; if
a < b then b < a does not hold; and if a < b and b < c then a < c. An order is total
if for any distinct a, b ∈ S either a < b or b < a; otherwise the order is called partial.
Given two sets S1 and S2 with orders <1 and <2, respectively, the lexicographical
order < on pairs from S1 × S2 is defined by (a1, a2) < (b1, b2) if either a1 <1 b1,
or a1 = b1 and a2 <2 b2. If <1 and <2 are total orders, then so is the corresponding
lexicographical order <.

4 1 Introduction

Modulo arithmetic

The integer domain modulo a positive natural number n is represented by the el-
ements {0, . . . , n − 1}. Each integer k has a representative modulo n, denoted
by k mod n, being the unique � ∈ {0, . . . , n − 1} such that k − � is divisi-
ble by n. This means that integer values are wrapped around when they reach n:
n mod n is represented by 0, (n + 1) mod n by 1, and so on. Addition and mul-
tiplication on integers carry over to modulo arithmetic in a straightforward fash-
ion: (j mod n) + (k mod n) = (j + k) mod n and (j mod n) · (k mod n) =
(j · k) mod n.

Exercises

Exercise 1.1 For each of the following functions f and g, say whether f = O(g)
and/or g = O(f).

(a) f(n) = 5n2 + 3n+ 7 and g(n) = n3.
(b) f(n) =

∑n
i=1 i and g(n) = n2.

(c) f(n) = nn and g(n) = n!.
(d) f(n) = n log2 n and g(n) = n

√
n
2 .

(e) f(n) = n+ n log2 n and g(n) = n
√
n.

I

Message Passing

2

Preliminaries

In a message-passing framework, a distributed system consists of a finite network (or
graph) of N processes (or nodes). Each process in the network carries a unique ID.
The processes in the network are connected by channels (or edges), through which
they can send messages to each other. There is at most one channel from one process
to another, and a process does not have a channel to itself. Sometimes a process may
want to communicate a message to itself, but for this clearly no channel is needed.
We use E and D to denote the number of channels and the diameter of the network,
respectively.

A process can record its own state and the messages it sends and receives; pro-
cesses do not share memory or a global clock. Each process knows only its (direct)
neighbors in the network. The topology of the network is assumed to be strongly
connected, meaning that there is a path from each process to every other process.

Communication in the network is asynchronous, meaning that sending and re-
ceiving a message are distinct events at the sending and receiving process, respec-
tively. The delay of a message in a channel is arbitrary but finite. We assume that
communication protocols are being used to avoid that messages are garbled, dupli-
cated or lost. Channels need not be FIFO, meaning that messages can overtake each
other.

In a directed network, messages can travel only in one direction through a chan-
nel, while in an undirected network, messages can travel either way. Undirected
channels are required for distributed algorithms that use an acknowledgment scheme.
Acyclic networks will always be undirected, since otherwise the network would not
be strongly connected. A network topology is called complete if there is an undi-
rected channel between each pair of different processes.

A spanning tree of an undirected network is a connected, acyclic graph that con-
sists of all the nodes and a subset of the edges in the network. The edges of the
spanning tree are called tree edges, and all other edges are called frond edges. Often
the edges in a spanning tree are given a direction to obtain a sink tree, in which all
paths lead to the same node, called the root; each directed edge leads from a child to
its parent.

8 2 Preliminaries

At some places we will deviate from the assumptions mentioned so far and move
to, for instance, synchronous communication in which sending and receiving of the
same message form one atomic event, or unreliable processes or channels, or FIFO
channels, or processes without a unique ID, or processes with a probabilistic instead
of a deterministic specification. This will then be stated explicitly.

Transition systems

A distributed algorithm, which runs on a distributed system, provides (usually deter-
ministic) specifications for the individual processes. The global state of a distributed
algorithm, called a configuration, evolves by means of transitions. The overall be-
havior of a distributed system is captured by a transition system, which consists of:

• a set C of configurations,
• a binary transition relation → on C, and
• a set I ⊆ C of initial configurations.

A configuration γ is terminal if it has no outgoing transition: γ → δ for no δ ∈ C.
An execution of the distributed system is a sequence γ0 γ1 γ2 · · · of configurations
that is either infinite or ends in a terminal configuration γk, such that:

• γ0 ∈ I, and
• γi → γi+1 for all i ≥ 0 (and in case of a finite execution, i < k).

A configuration δ is reachable if there is a γ0 ∈ I and a sequence γ0 γ1 · · · γk with
γi → γi+1 for all 0 ≤ i < k and γk = δ.

States and events

The configuration of a distributed system is composed from the local states of its
processes and the messages in transit. A transition between configurations of a dis-
tributed system is associated to an event (or, in case of synchronous communication,
two events) at one (or two) of its processes. A process can perform internal, send and
receive events. An internal event influences only the state at the process where the
event is performed. Typical internal events are reading or writing to a local variable.
Assignment of a new value to a variable is written as ←; for example, n ← n + 1
means that the value of variable n, representing a natural number, is increased by
one. A send event in principle gives rise to a corresponding receive event of the same
message at another process. It is assumed that two different events never happen at
the same moment in real time (with the exception of synchronous communication).

A process is an initiator if its first event is an internal or send event; that is, an
initiator can start performing events without input from another process. An algo-
rithm is centralized if there is exactly one initiator. A decentralized algorithm can
have multiple initiators.

2 Preliminaries 9

Assertions

An assertion is a predicate on the configurations of an algorithm. That is, in each
configuration the assertion is either true or false.

An assertion is a safety property if it is true in each reachable configuration of
the algorithm. A safety property typically expresses that something bad will never
happen. Examples of safety properties are:

– You can always count on me.
– The cost of living never decreases.
– If an interrupt occurs, a message will be printed within one second.

In particular, the last example states that never no message gets printed within one
second after an interrupt.

In general, it is undecidable whether a given configuration is reachable. An as-
sertion P is an invariant if:

• P (γ) for all γ ∈ I, and
• if γ → δ and P (γ), then P (δ).

In other words, an invariant is true in all initial configurations and is preserved by all
transitions. Clearly, each invariant is a safety property. Note that checking whether
an assertion is an invariant does not involve reachability.

An assertion is a liveness property if executions, from some point on, contain a
configuration in which the assertion holds. A liveness property typically expresses
that something good will eventually happen. Examples of liveness properties are:

– What goes up, must come down.
– The program always eventually terminates.
– If an interrupt occurs, a message will be printed.

A liveness property sometimes holds only with respect to the so-called fair ex-
ecutions of an algorithm. For example, consider a simple algorithm that consists of
flipping a coin until the result is tails. Since there is an infinite execution in which the
outcome of every coin flip is heads, the liveness property that eventually the outcome
will be tails does not hold. However, if the coin is fair, this infinite execution has zero
chance of happening; infinitely often we flip the coin with the possible outcome tails,
but never is the outcome tails. We say that an execution is fair if every event that can
happen in infinitely many configurations in the execution is performed infinitely of-
ten during the execution. The infinite execution in which the outcome of every coin
flip is heads is not fair. Note that any finite execution is by default fair.

Causal order

In each configuration of an asynchronous distributed system, events that can occur
at different processes are independent, meaning that they can happen in any order.
The causal order ≺ is a binary relation on events in an execution such that a ≺ b
if and only if a must happen before b. That is, the events in the execution cannot be
reordered in such a way that a happens after b. The causal order for an execution is
the smallest relation such that:

10 2 Preliminaries

• if a and b are events at the same process and a occurs before b, then a ≺ b,
• if a is a send and b the corresponding receive event, then a ≺ b, and
• if a ≺ b and b ≺ c, then a ≺ c.

We write a � b if either a ≺ b or a = b. Distinct events in an execution that are not
causally related are called concurrent. An important challenge in the design of dis-
tributed systems is to cope with concurrency (for example, to avoid race conditions).

A permutation of concurrent events in an execution does not affect the result of
the execution. These permutations together form a computation. All executions of a
computation start in the same configuration, and if they are finite, they all end in the
same terminal configuration. In general, we will consider computations rather than
executions.

Logical clocks

A common physical clock, which tries to approximate the global real time, is in
general difficult to maintain by the separate processes in a distributed system. For
many applications, however, we are not interested in the precise moments in time at
which events occur, but only in the ordering of these occurrences in time. A logical
clock C maps occurrences of events in a computation to a partially ordered set such
that

a ≺ b ⇒ C (a) < C (b).

Lamport’s clock LC assigns to each event a the length k of a longest causality chain
a1 ≺ · · · ≺ ak = a in the computation. It is not hard to see that a ≺ b implies
LC (a) < LC (b), so Lamport’s clock is a logical clock. The clock values that Lam-
port’s clock assigns to events can be computed at run-time as follows. Consider an
event a, and let k be the clock value of the previous event at the same process (k = 0
if there is no such previous event).

• If a is an internal or send event, then LC (a) = k + 1.
• If a is a receive event and b the send event corresponding to a, then LC (a) =

max{k,LC (b)}+ 1.

Lamport’s clock may order concurrent events; that is, it may be the case that
LC (a) < LC (b) for concurrent events a and b. Sometimes it is useful to use a
logical clock for which this is never the case. The vector clock VC has the property
that

a ≺ b ⇔ VC (a) < VC (b).

Let the network consist of processes p0, . . . , pN−1. The vector clock assigns to
events in a computation values in N

N , whereby this set is provided with a partial
order defined by:

(k0, . . . , kN−1) ≤ (�0, . . . , �N−1) ⇔ ki ≤ �i for all i = 0, . . . , N − 1.

(In contrast to the lexicographical order on N
N , this order is partial.) The vector

clock is defined as follows: VC (a) = (k0, . . . , kN−1) where each ki is the length

Exercises 11

of a longest causality chain ai1 ≺ · · · ≺ aiki
of events at process pi with aiki

� a.
Clearly, a ≺ b implies VC (a) < VC (b); this follows from the fact that c � a
implies c ≺ b, for each event c. Conversely, VC (a) < VC (b) implies a ≺ b.
Namely, consider the longest causality chain ai1 ≺ · · · ≺ aik = a of events at the
process pi where a occurs. Then VC (a) < VC (b) implies that the i-th coefficient
of VC (b) is at least k, and so a � b. Since clearly a and b must be distinct events,
a ≺ b. The vector clock can also be computed at run-time (see exercise 2.7).

Basic and control algorithms

Several chapters will discuss distributed algorithms to provide some service or de-
tect a certain property during the execution of a distributed algorithm. For instance,
chapter 3 shows how processes can take a snapshot of a configuration in the ongoing
computation, chapter 6 treats how processes can detect termination, and chapter 7
discusses garbage collection to reclaim unaccessible objects in memory. Then the
underlying distributed algorithm for which we are taking a snapshot, detecting ter-
mination or collecting garbage, is called the basic algorithm, while the distributed
algorithm put on top for executing this specific task is called the control algorithm.

Bibliographical notes

Lamport’s clock originates from [45]. The vector clock was proposed independently
in [29] and [55]. Dedicated frameworks exist to support the implementation of dis-
tributed algorithms on graphs [53, 41].

Exercises

Exercise 2.1 What is more general:

(a) An algorithm for directed or undirected networks?
(b) A control algorithm for centralized or decentralized basic algorithms?

Exercise 2.2 [76] Give a transition system S and an assertion P such that P is a
safety property but not an invariant of S.

Exercise 2.3 [76] Define the union of S1 = (C,→1, I) and S2 = (C,→2, I) as
S = (C,→, I) with → = (→1 ∪ →2). Prove that if P is an invariant of S1 and S2,
then P is an invariant of S.

Exercise 2.4 Consider the following execution, of an algorithm involving processes
p0, p1, p2, and p3; events are given in the order in which they are executed in real
time:

– p0 sends a message to p2;

12 2 Preliminaries

– p3 sends a message to p2;
– p0 sends a message to p1;
– p2 receives the message from p0;
– p1 receives the message from p0;
– p2 performs an internal event;
– p2 sends a message to p3;
– p3 receives the message from p2;
– p2 receives the message from p3;
– p3 performs an internal event;
– p1 sends a message to p0;
– p3 sends a message to p2;
– p0 receives the message from p1;
– p2 receives the message from p3.

Use Lamport’s logical clock to assign clock values to these events. Do the same for
the vector clock.

Exercise 2.5 [76] Define the causal order for the transitions of a system with syn-
chronous communication. Adapt Lamport’s logical clock for such systems, and give
a distributed algorithm for computing the clock at run-time.

Exercise 2.6 Give an example where LC (a) < LC (b) while a and b are concurrent
events.

Exercise 2.7 Give an algorithm to compute the vector clock at run-time.

3

Snapshots

A snapshot of an execution of a distributed algorithm is a configuration of this ex-
ecution, consisting of the local states of the processes and the messages in transit.
Snapshots are useful to try to determine offline properties that will remain true as
soon as they have become true, such as deadlock (see chapter 5), termination (see
chapter 6) or garbage (see chapter 7). Moreover, snapshots can be used for check-
pointing to restart after a failure, or for debugging.

In a centralized environment one can at any moment during a program run query
the program state, consisting of the values of the program variables. In a distributed
setting, this is not the case. Suppose that a process that is involved in the execution of
a distributed algorithm wants to make a snapshot of a configuration of the ongoing
execution. Then it should ask all processes to take a snapshot of their local state.
Processes moreover have to compute channel states, of messages that were in transit
at the moment of the snapshot. The challenge is to develop a snapshot algorithm
that works at run-time, that is, without freezing the execution of the basic algorithm
of which the snapshot is taken. Messages of the basic algorithm are called basic
messages, while messages of the snapshot algorithm are called control messages.

A complication is that processes take local snapshots and compute channel states
at different moments in time. Therefore, a snapshot may actually not represent a
configuration of the ongoing execution, but a configuration of an execution in the
same computation is good enough. Such a snapshot is called consistent.

One has to be careful not to take an inconsistent snapshot. For instance, a process
p could take a local snapshot and then send a basic message m to a process q, where
q could either take a local snapshot after the receipt of m or include m in the state
of the channel pq. This would turn m into a “ghost” message of the snapshot, which
was not sent according to p but was in transit or received according to q. Likewise, p
could send a basic message m before taking its local snapshot, while q could receive
m after taking its local snapshot and exclude m from the channel state of pq. Such
incorrect snapshots clearly have to be avoided.

An event is called presnapshot if it occurs at a process before the local snap-
shot at this process is taken; else it is called postsnapshot. A snapshot is consistent
if: (1) for each presnapshot event a, all events that are causally before a are also

14 3 Snapshots

presnapshot; and (2) a basic message is included in a channel state if and only if
the corresponding send event is presnapshot while the corresponding receive event is
postsnapshot. The first property guarantees that all presnapshot events can be placed
before the postsnapshot events in the actual execution by means of permutations that
do not violate the causal order. This implies that the snapshot is a configuration of an
execution that is in the same computation as the actual execution.

We discuss two decentralized snapshot algorithms for directed networks; the
first one requires channels to be FIFO. In these algorithms, the individual processes
record fragments of the snapshot; the subsequent phase of collecting these fragments
to obtain a composite view is omitted here.

3.1 Chandy-Lamport algorithm

The Chandy-Lamport snapshot algorithm requires that channels are FIFO. Any ini-
tiator can decide to take a local snapshot of its state. It then sends a control message
〈marker〉 through all its outgoing channels to let its neighbors take a snapshot too.
When a process that has not yet taken a snapshot receives a 〈marker〉 message, it
takes a local snapshot of its state, and sends a 〈marker〉 message through all its out-
going channels. A process q computes as channel state for an incoming channel pq
the (basic) messages that it receives via pq after taking its local snapshot and before
receiving a 〈marker〉 message from p. The Chandy-Lamport algorithm terminates
at a process when it has received a 〈marker〉 message through all its incoming
channels.

Example 3.1 We consider one possible computation of the Chandy-Lamport algo-
rithm on the directed network below. First, process p takes a local snapshot of its state
(dark gray), and sends 〈marker〉 into its two outgoing channels pq and pr. Next, p
sends a basic message m1 to process q, and changes its state (to black). Moreover,
process r receives 〈marker〉 from p, and as a result sends 〈marker〉 into its outgo-
ing channel rp, takes a local snapshot of its state (white), and computes the channel
state ∅ for its incoming channel pr.

snapshot snapshot
〈mkr〉

〈mkr〉

p

q

r

〈mkr〉

p

q

r

m1

〈mkr〉
∅

Next, p receives 〈marker〉 from r, and as a result computes the channel state ∅ for its
incoming channel rp. Moreover, q sends a basic message m2 to r. Next, q receives
〈marker〉 from p, and as a result sends 〈marker〉 into its outgoing channel qr,
takes a local snapshot of its state (light gray), and computes the channel state ∅ for

3.2 Lai-Yang algorithm 15

its incoming channel pq. Finally, r receives m2 and next 〈marker〉 from q, and as a
result it computes the channel state {m2} for its incoming channel qr.

snapshot

p

q

r p

q

r

m1m1

∅

∅
m2

〈mkr〉
{m2}

We note that the computed snapshot (states: dark gray, light gray, white; chan-
nels: ∅, ∅, ∅, {m2}) is not a configuration of the actual execution. However, the send-
ing of m1 and the internal event at p that changes its state from light gray to black are
both not causally before the sending of m2. Therefore, the snapshot is a configuration
of an execution in the same computation as the actual execution.

We argue that if an event a is causally before a presnapshot event b, then a is also
presnapshot. If a and b occur at the same process, then this is trivially the case. The
interesting case is where a is a send and b the corresponding receive event. Suppose
that a occurs at process p and b at process q. Since b is presnapshot, q has not yet
received a 〈marker〉 message at the time it performs b. Since channels are FIFO,
this implies p has not yet sent a 〈marker〉 message to q at the time it performs a.
Hence, a is presnapshot.

Moreover, a basic message m via a channel pq is included in the channel state of
pq if and only if the corresponding send event at p is presnapshot and the correspond-
ing receive event at q is postsnapshot. Namely, q must receive m before 〈marker〉
through pq; so since channels are FIFO, p must send m before 〈marker〉 into pq.
Furthermore, q starts computing the channel state of pq after taking it local snapshot.

The Chandy-Lamport algorithm requires E control messages, and it takes at most
O(D) time units to complete.

3.2 Lai-Yang algorithm

The Lai-Yang snapshot algorithm does not require channels to be FIFO. Any initiator
can decide to take a local snapshot of its state. As long as a process has not taken
a local snapshot, it appends false to each outgoing basic message; after its local
snapshot, it appends true to these messages. When a process that has not yet taken
a local snapshot receives a message with the tag true, it takes a local snapshot of its
state before the reception of this message. A process q computes as channel state of
an incoming channel pq the basic messages with the tag false that it receives through
this channel after having taken its local snapshot.

There are two complications. First, if after its local snapshot an initiator would
happen not to send any basic messages, other processes might never take a local
snapshot. Second, how does a process know when it can stop waiting for basic mes-
sages with the tag false and compute the state of an incoming channel? Both issues

16 3 Snapshots

are resolved by a special control message, which a process p sends into each outgo-
ing channel pq after having taken its local snapshot. This control message informs
q how many basic messages with the tag false p has sent into the channel pq. In
case q has not yet taken a local snapshot, it takes one upon reception of this control
message.

Example 3.2 Consider a network of two processes p and q, with non-FIFO channels
pq and qp. We apply the Lai-Yang algorithm to take a snapshot.

Let p send basic messages 〈m1, false〉 and 〈m2, false〉 to q. Then it takes a local
snapshot of its state and sends a control message to q, reporting that p sent two
basic message with the tag false to q. Next, p sends basic messages 〈m3, true〉 and
〈m4, true〉 to q. Let 〈m3, true〉 arrive at q first. Then q takes a local snapshot of
its state and sends a control message to p, reporting that q did not send any basic
message with the tag false to p. Next, q waits until the control message from p,
〈m1, false〉, and 〈m2, false〉 have arrived and concludes that the channel state of pq
consists of m1 and m2. Thanks to the tag true, q recognizes that m3 and m4 are not
part of the channel state. When p receives q’s control message, it concludes that the
channel state of qp is empty.

Similar to the Chandy-Lamport algorithm, we can argue that if an event a is
causally before a presnapshot event b, then a is also presnapshot. Again, the inter-
esting case is where a is a send and b the corresponding receive event. Since b is
presnapshot, the message sent by a carries the tag false. Hence, a is presnapshot.

Moreover, a basic message m via a channel pq is included in the channel state
of pq if and only if the corresponding send event at p is presnapshot, and the corre-
sponding receive event at q is postsnapshot. Namely, m carries the tag false, and q
starts computing the channel state of pq after taking it local snapshot.

The Lai-Yang algorithm requires E control messages, and it takes at most O(D)
time units to complete for each snapshot.

Bibliographical notes

The Chandy-Lamport algorithm originates from [16]. The Lai-Yang algorithm stems
from [43]; the special control message was suggested in [55].

Exercises

Exercise 3.1 Give an example to show that the Chandy-Lamport algorithm is flawed
if channels are not FIFO.

Exercise 3.2 Propose an adaptation of the Chandy-Lamport algorithm, in which ba-
sic messages may be buffered at the receiving processes, and the channel states of
the snapshot are always empty.

Exercises 17

Exercise 3.3 Give an example in which the Lai-Yang algorithm computes a snapshot
that is not a configuration of the ongoing execution.

Exercise 3.4 Adapt the Lai-Yang algorithm so that it supports multiple subsequent
snapshots.

Exercise 3.5 Give a snapshot algorithm for undirected networks with non-FIFO
channels that uses:

• marker messages, tagged with the number of basic messages sent into a channel
before the marker message,

• acknowledgments, and
• temporary (local) freezing of the basic execution.

4

Waves

In distributed computing, a process often needs to gather information from all other
processes in the network. This process then typically sends a request through the
network, which incites the other processes to reply with the required information.
Notable examples are termination detection, routing, and election of a leader in the
network.

This procedure is formalized in the notion of a wave algorithm, in which each
computation, called a wave, satisfies the following three properties:

• It is finite.
• It contains one or more decide events.
• For each decide event a and process p, b ≺ a for some event b at p.

The idea behind wave algorithms is that each computation gives rise to one or more
decisions in which all processes have a say. An important characteristic of a wave
algorithm is that it does not complete if any process p refuses to take part in its
execution, because no event at p in the wave would be causally before the decide
event.

Often a wave is initiated by one process, and in the end one decide event happens,
at the initiator. If there can be concurrent calls of a wave algorithm, initiated by
different processes, then usually for each wave the messages are marked with the
ID of its initiator. In such a setting, if a wave does not complete, because a process
refuses to take part, then typically another wave will complete successfully later on
(see, for example, Rana’s termination detection algorithm in section 6.3, or the echo
algorithm with extinction for election in section 9.3).

4.1 Traversal algorithms

A traversal algorithm is a centralized wave algorithm in which the initiator sends a
token through the network. After visiting all other processes, the token returns to the
initiator, who then makes a decision. A typical example of a traversal algorithm is
the so-called ring algorithm, in which the token makes one trip around the ring.

20 4 Waves

Traversal algorithms can be used to build a spanning tree of the network, with
the initiator as the root. Each noninitiator has as parent the process from which it
received the token for the first time.

Tarry’s algorithm

Tarry’s algorithm is a traversal algorithm for undirected networks. It is based on the
following two rules:

1. A process never forwards the token through the same channel twice.
2. A process only forwards the token to its parent when there is no other option.

By applying these two rules, the token travels through each channel twice and finally
ends up at the initiator.

Example 4.1 We apply Tarry’s algorithm to the following network; p is the initiator.

q

ts

rp
3

24

10

5

6

17

8 9

1112

The network is undirected (and unweighted); arrows and numbers mark the consec-
utive steps of one possible path of the token. Solid arrows establish a parent-child
relation (in the opposite direction) in the resulting spanning tree. So the resulting
spanning tree of this execution is:

q

ts

rp

Tree edges are solid, while frond edges are dashed.

We argue that in Tarry’s algorithm the token travels through each channel twice,
once in each direction, and finally ends up at the initiator. By rule 1, the token is
never sent through the same channel in the same direction twice. Each time a non-
initiator p holds the token, it has received the token one more time than it has sent
the token to a neighbor, meaning that there is still a channel into which p has not
yet sent the token. So by rule 1, p can send the token into this channel. Hence, when
Tarry’s algorithm terminates, the token must be at the initiator. Assume, toward a
contradiction, that at the moment of termination some channel pq has not been tra-
versed by the token in both directions; let noninitiator p be the earliest visited process

4.1 Traversal algorithms 21

for which such a channel exists. Since by assumption all channels of the parent of p
have been traversed in both directions, in particular, p has sent the token to its parent.
So by rule 2, p must have sent the token into all its channels. Since p has sent and
received the token an equal number of times, it must have received the token through
all its channels. To conclude, the token has traveled through pq in both ways; this is
a contradiction.

Tarry’s algorithm requires 2E messages, and it takes at most 2E time units to
terminate.

Depth-first search

In a depth-first search, starting from the initiator, whenever possible, the token is
forwarded to a process that did not hold the token yet. If a process holding the token
has no unvisited neighbor, then it sends the token back to its parent, being the process
from which it received the token.

The spanning tree in example 4.1 is not a depth-first search tree, that is, it cannot
be the result of a depth-first search. Namely, in a depth-first search, processes s and
t would never both have p as their parent. In general, a spanning tree is the result of
a depth-first search if all frond edges connect an ancestor with one of its descendants
in the spanning tree (unlike the frond edge between s and t).

A depth-first search is obtained by adding one more rule to Tarry’s algorithm:

3. When a process receives the token, it immediately sends it back through the same
channel if this is allowed by rules 1 and 2.

Example 4.2 Consider the same network as in example 4.1; p is again the initiator.
Below one possible depth-first search is depicted.

q

ts

rp
3

2

6

11

8

19

4

71210

5

In example 4.1, when p received the token from q, it forwarded it to s. However, here
p is forced to send the token back to q immediately, due to rule 3.

Depth-first search is a special case of Tarry’s algorithm, so it also takes 2E mes-
sages, and at most 2E time units to terminate.

Sending the token back and forth through a frond edge, such as steps 3,4 and
9,10 in example 4.2, constitutes a loss of time. One obvious way to avoid this is by
including the IDs of visited processes in the token, so that a process can determine
which neighbors have already seen the token. Since the token then travels back and
forth only through the N −1 tree edges, the message complexity is reduced from 2E
to 2N −2 messages, and similarly the time complexity to at most 2N −2 time units.

22 4 Waves

The drawback, however, is that the bit complexity goes up from O(1) to O(N logN)
(assuming that O(logN) bits are needed to represent the ID of a process).

An alternative is to let a process p that holds the token for the first time inform
its neighbors (except the process that sent the token to p and the process to which p
will send the token) that it has seen the token. In Awerbuch’s depth-first search algo-
rithm, p waits for acknowledgments from all those neighbors before forwarding the
token, to ensure that they cannot receive the token before p’s information message. A
process marks a channel as frond edge as soon as it has received an information mes-
sage through this channel and the token through another channel. A process never
forwards the token through a frond edge. The worst-case message complexity goes
up to 4E, because frond edges carry two information messages and two acknowledg-
ments, while tree edges carry two forwarded tokens and possibly one information and
acknowledgment pair. Also, the worst-case time complexity goes up, to 4N −2 time
units, because tree edges carry two forwarded tokens, and each process may wait at
most two time units for acknowledgments to return.

Cidon’s depth-first search algorithm improves on Awerbuch’s algorithm by abol-
ishing the waiting for acknowledgments. A process p forwards the token without
delay and records to which process forwardp it forwarded the token last. In case p
receives the token back from a process q �= forwardp, it purges the token and marks
the channel pq as frond edge. No further action from p is required, because q will
eventually receive the information message from p. Then in turn q marks the channel
pq as frond edge, and continues to forward the token to another process (if possible).

Example 4.3 In the following undirected network, with p as initiator, one possible
computation of Cidon’s depth-first search is depicted.

p q

4 7

3 2

9

1

65

8

s r t

r forwards the token through the frond edge pr before the information message from
p reaches r. When the information message from p arrives, r continues to forward
the token to s. The information message from p reaches s before the token does, so
that s does not send the token to p.

In Cidon’s algorithm, frond edges may carry two information messages and two
acknowledgments (see exercise 4.2), so the worst-case message complexity is still
4E. But the worst-case time complexity reduces to 2N − 2 time units, because at
least once per time unit a token is forwarded through a tree edge, and the N − 1 tree
edges each carry two tokens.

4.2 Tree algorithm 23

4.2 Tree algorithm

The tree algorithm is a decentralized wave algorithm for undirected, acyclic net-
works. A process p waits until it has received messages from all its neighbors except
one. Then p makes that neighbor its parent and sends a message to it. When p re-
ceives a message from its parent, it decides. Always exactly two processes in the
network decide, and these two processes consider each other their parent.

Example 4.4 We consider one possible computation of the tree algorithm on the
following network.

u

t

s

q

p

r

– p and q send a message to r, and make r their parent. Likewise, t and u send a
message to s, and make s their parent.

– When the messages from t and u have arrived, s sends a message to r and makes
r its parent.

– When the messages from q and s have arrived, r sends a message to p and makes
p its parent.

– When p’s message has arrived, r decides. Likewise, when r’s message has ar-
rived, p decides.

The parent-child relations in the terminal configuration are as follows.

u

t

s

q

p

r

We argue that in each execution of the tree algorithm, exactly two processes de-
cide. As each process sends at most one message, each execution reaches a terminal
configuration γ. Suppose, toward a contradiction, that in γ a process p has not sent
any message, meaning that it did not receive a message through two of its channels,
say qp and rp. Since γ is terminal, q did not send a message to p, which implies it
did not receive a message through two of its channels, pq and say sq, and so forth.
Continuing this argument, we would establish a cycle of processes that did not re-
ceive a message through two of their channels. This contradicts the assumption that
the network topology is acyclic. So in γ each process has sent a message, meaning
that there have been N messages in total. Since processes send a message into the

24 4 Waves

only channel through which they did not yet receive a message, clearly each chan-
nel carries at least one message. An acyclic network has N − 1 channels, so exactly
one channel carries two messages. Only the two processes t and u connected by this
channel decide. All events, except for the reception of t’s message and the decision
at u, are causally before the decision at t; likewise for the decision at u.

The tree algorithm is incorrect for networks that contain a cycle, because in that
case the algorithm does not terminate. For instance, consider a ring of three pro-
cesses. Since each process has two neighbors, it will wait for a message from one of
its neighbors. Hence, all three processes wait for input, meaning that no event ever
happens.

The tree algorithm takes at most D
2 time units to terminate, if D > 1.

4.3 Echo algorithm

The echo algorithm is a centralized wave algorithm for undirected networks. It un-
derlies several of the distributed algorithms presented in the following chapters.

The initiator starts by sending a message to all its neighbors. Intuitively, these
messages travel in all directions, and bounce back from the corners of the network
toward the initiator. This is achieved as follows. When a noninitiator receives a mes-
sage for the first time, it makes the sender its parent, and sends a message to all
neighbors except its parent. When a noninitiator has received messages from all its
neighbors, it sends a message to its parent. Finally, when the initiator has received
messages from all its neighbors, it decides.

Example 4.5 We consider one possible computation of the echo algorithm on the
following network.

q

ts

rp

– p sends messages to q, s, and t.
– p’s message arrives at q, who makes p its parent and sends messages to r, s, and

t.
– q’s message arrives at t, who makes q its parent and sends messages to p and s.
– q’s message arrives at r, who makes q its parent. Since r has no other neighbors,

it sends a message to its parent q straightaway.
– p’s message arrives at s, who makes p its parent and sends messages to q and t.
– p’s and s’s message arrive at t, who sends a message to its parent q.
– r’s, s’s, and t’s message arrive at q, who sends a message to its parent p.

Exercises 25

– q’s and t’s message arrive at s, who sends a message to its parent p.
– q’s, s’s, and t’s message arrive at p, who decides.

The resulting spanning tree is as follows.

q

ts

rp

We argue that the echo algorithm is a wave algorithm. Clearly, it constructs a
spanning tree that covers the entire network. When a noninitiator joins this tree, at
reception of a message from its parent, it sends a message to all its other neighbors.
Moreover, the initiator sends a message to all its neighbors. Hence, through each
frond edge, one message travels either way. We argue by induction on the size of the
network that each noninitiator eventually sends a message to its parent. Consider a
leaf p in the spanning tree. Eventually, p will receive a message from all its neighbors
(as only the channel to its parent is a tree edge), and send a message to its parent.
When this message arrives, we can consider the network without p, in which by
induction each noninitiator eventually sends a message to its parent. We conclude
that through each channel one message travels either way. So eventually the initiator
receives a message from all its neighbors, and decides. All messages are causally
before this decision.

In total, the echo algorithm takes 2E messages, and it takes at most 2N − 2 time
units to terminate.

Bibliographical notes

Tarry’s algorithm originates from [75]. The first distributed depth-first search algo-
rithm was presented in [20]. Awerbuch’s algorithm originates from [7], and Cidon’s
algorithm from [22]. The echo algorithm stems from [18]; the presentation here is
based on a slightly optimized version from [70].

Exercises

Exercise 4.1 Give an example of a computation of Awerbuch’s algorithm in which
an information message and an acknowledgment are communicated through the
same tree edge.

Exercise 4.2 Give an example of a computation of Cidon’s algorithm in which two
information messages and two tokens are communicated through the same channel
in the network.

26 4 Waves

Exercise 4.3 Argue that the tree algorithm takes at most D time units to terminate,
in case we take into account the time needed to communicate the decision to all
processes.

Exercise 4.4 Consider an undirected network of N > 3 processes p0, . . . , pN−1,
where p1, . . . , pN−1 form a ring and p0 has a channel to all other processes. (Note
that this network has diameter 2.) Give a computation of the echo algorithm on this
network, with p0 as initiator, that takes N time units to complete.

Exercise 4.5 Argue that the echo algorithm takes at most 2N − 2 time units to ter-
minate.

Exercise 4.6 [76] Suppose you want to use the echo algorithm in a network where
duplication of messages may occur. Which modification should be made to the algo-
rithm?

Exercise 4.7 [76] Let each process initially carry a random integer value. Adapt
the echo algorithm to compute the sum of these integer values. Explain why your
algorithm is correct.

5

Deadlock Detection

A process may wait for other processes to send or be ready to receive some input,
or for some resource to become available. A deadlock occurs if a process is doomed
to wait forever. This happens if there is a cycle of processes waiting either for each
other or for a resource occupied by another process in the cycle. The first type of
deadlock is called a communication deadlock, while the second type is called a re-
source deadlock.

Deadlock detection is a fundamental problem in distributed computing, which
requires determining a permanent cyclic dependency within a running system. For
this purpose, the global configuration of the distributed system is regularly examined
by individual processes to detect whether a deadlock has occurred. That is, snap-
shots are taken of the global configuration of the system, and these are examined for
cycles. In case a deadlock is detected, the basic algorithm may be rolled back and
processes may be restarted in order to remove the detected deadlock. Here we focus
on detection of deadlocks and ignore rollback.

5.1 Wait-for graphs

A wait-for graph depicts dependencies between processes and resources. A node in
a wait-for graph can represent either a process or a resource. Both communication
and resource deadlocks can be captured by so-called N -out-of-M requests, where
N ≤ M . For example, if a process is waiting for one message from a group of M
processes, then N = 1; or, if a database transaction first has to lock M files, then
N = M .

A nonblocked node u in a wait-for graph can issue an N -out-of-M request,
meaning that it sends a request to M other nodes and becomes blocked until N
of these requests have been granted. In the wait-for graph, a directed edge is drawn
from u to each of the M nodes to which u issued the N -out-of-M request. Only non-
blocked nodes can grant a request. Every time a node v grants u’s request, the edge
uv can be removed from the wait-for graph. When N requests have been granted, u
becomes unblocked and informs the remaining M −N nodes that u’s request can be

28 5 Deadlock Detection

purged; accordingly, the M −N outgoing edges of u are removed from the wait-for
graph.

The following example shows how a wait-for graph can be used to model com-
munication deadlocks.

Example 5.1 Suppose process p must wait for a message from process q. In the wait-
for graph, p sends a request to q; as a result, an edge pq is created and p becomes
blocked. When q sends a message to p, the request from p is granted. Then the edge
pq is removed from the wait-for graph, and p becomes unblocked.

The following example shows how a wait-for graph can be used to model re-
source deadlocks.

Example 5.2 Suppose two different processes p and q want to claim a resource,
while at any time only one process can own the resource.

– Nodes u and v, representing p and q, respectively, send a request to node w,
representing the resource. As a result, in the wait-for graph, edges uw and vw
are created.

– The resource is free, and w sends a grant to say u, so that p can claim the resource.
In the wait-for graph, the edge uw is removed.

– The resource must be released by p before q can claim it. Therefore, w sends a
request to u, creating an edge wu in the wait-for graph.

– After p releases the resource, u grants the request from w. Then the edge wu is
removed from the wait-for graph.

– Now w can grant the request from v, so that q can claim the resource. In the
wait-for graph, the edge vw is removed and an edge wv is created.

In wait-for graphs, an M -out-of-M request with M > 1 (also called AND re-
quest) is drawn with an arc through the M edges, while a 1-out-of-M request (also
called OR request) is drawn without an arc. For example, for M = 3,

OR (1-out-of-3) requestAND (3-out-of-3) request

The examples in this chapter do not contain any N -out-of-M requests with 1 < N <
M .

5.2 Bracha-Toueg algorithm 29

5.2 Bracha-Toueg algorithm

To try to detect a deadlock with regard to an ongoing execution of a basic algorithm,
first a snapshot can be taken of the corresponding wait-for graph. A process that
suspects it is deadlocked, starts a Lai-Yang snapshot to compute the wait-for graph
(see section 3.2). To distinguish subsequent snapshots, snapshots (and their control
messages) are tagged with a sequence number. Each node u takes a local snapshot to
determine the requests it sent or received that were not yet granted or purged, taking
into account the grant and purge messages in the snapshot of its incoming edges.
Then it computes two sets of nodes:

• Outu: the nodes u has sent a request to that were not yet granted or purged.
• Inu: the nodes u has received a request from that were not yet granted or purged.

A static analysis on the computed wait-for graph may reveal deadlocks:

• Nonblocked nodes in the wait-for graph can grant requests.
• When a request has been granted, the corresponding edge in the wait-for graph

is removed.
• When a node u with an outstanding N -out-of-M request has received N grants,

u becomes unblocked. The remaining M−N outgoing edges of u in the wait-for
graph are removed.

When no more grants are possible, nodes that are still blocked in the wait-for graph
are deadlocked in the snapshot of the basic algorithm.

We consider two examples. Granted requests are drawn as dashed arrows (they
are no longer part of the wait-for graph).

Example 5.3 The next wait-for graph contains three 2-out-of-2 requests. Blocked
nodes are colored gray.

v w

u

v w

u xx

The unblocked node x grants the three incoming requests. After that the three other
nodes remain blocked, so no other requests can be granted. Hence, these three nodes
are deadlocked.

Example 5.4 The next wait-for graph contains two 2-out-of-2 requests and one 1-
out-of-2 request.

30 5 Deadlock Detection

v w

u

v w

u xx

The unblocked node x grants the three incoming requests. As a result node w be-
comes unblocked, which purges its remaining request to v and grants the incoming
request from u. Next, node u becomes unblocked, which grants the last pending
request in the graph.

v w

u

v w

u xx

Finally, all nodes have become unblocked, so no nodes are found to be deadlocked.

Let the basic algorithm run on an undirected network, and suppose a wait-for
graph has been computed. The Bracha-Toueg deadlock detection algorithm provides
a distributed method to perform the static analysis for cleaning out the wait-for graph
to try to find deadlocks. The nodes in the wait-for graph start to resolve grants, in the
manner described before. Initially, requestsu is the number of grants node u requires
in the wait-for graph to become unblocked. When requestsu is or becomes 0, u sends
grant messages to all nodes in Inu. When u receives a grant message, requestsu ←
requestsu− 1. If after termination of this deadlock detection run requests > 0 at the
initiator, then it is deadlocked in the basic algorithm.

A key question is how to determine that deadlock detection has terminated. In
principle, nodes could apply a termination detection algorithm from chapter 6. How-
ever, the Bracha-Toueg algorithm is designed in such a way that termination detec-
tion comes for free. We now explain in detail how the nodes choreograph cleaning
out the wait-for graph. Initially, notifiedu = false and freeu = false at all nodes
u; these two variables ensure that u executes at most once the routine Notifyu and
Grantu, respectively, given below. The initiator v of deadlock detection starts the
resolution of grants throughout the wait-for graph by executing Notifyv . It consists
of sending a notify message into all outgoing edges, and executing Grantv in case
requestsv = 0. Noninitiators u that receive a notify message for the first time
execute Notifyu. Moreover, nodes u that are or become unblocked, meaning that
requestsu = 0, grant all pending requests, by executing Grantu. The pseudocode
for the procedure Notifyu is:

5.2 Bracha-Toueg algorithm 31

notifiedu ← true;
send 〈notify〉 to all w ∈ Outu;
if requestsu = 0 then

perform procedure Grantu;
end if

await 〈done〉 from all w ∈ Outu;

And the pseudocode for the procedure Grantu is:

freeu ← true;
send 〈grant〉 to all w ∈ Inu;
await 〈ack〉 from all w ∈ Inu;

Note that since Grantu is a subcall of Notifyu, waiting for ack messages postpones
the sending of done messages.

If a node u receives a notify message from a neighbor v, it does the following:

if notifiedu = false then

perform procedure Notifyu;
end if

send 〈done〉 to v;

If a node u receives a grant message from a neighbor v, it does the following:

if requestsu > 0 then

requestsu ← requestsu − 1;
if requestsu = 0 then

perform procedure Grantu;
end if

end if

send 〈ack〉 to v;

Note that if u receives a notify message and notifiedu = true (meaning that u
already executed Notifyu), or a grant message and the assignment requestsu ←
requestsu − 1 does not set requestsu from 1 to 0 (meaning that u does not become
unblocked by the grant message), then u immediately sends back a done or ack
message, respectively.

While a node is awaiting done or ack messages, it can process incoming notify
and grant messages. The done (and ack) messages are used for termination de-
tection. That is, when the initiator v has received a done message from all nodes in
Outv , it checks the value of freev . If it is still false, v concludes that it is deadlocked.

32 5 Deadlock Detection

Example 5.5 Suppose the following wait-for graph, consisting of one 2-out-of-2
request and two 1-out-of-1 requests, has been computed in a snapshot. Initially,
requestsu = 2, requestsv = requestsw = 1, and requestsx = 0.

u

v w

x

We consider one possible computation of the Bracha-Toueg algorithm.

– Initiator u starts by sending a notify to v and x, and must now await a done
from both v and x before it can examine requestsu to see whether it is dead-
locked.

u

v w

x

〈notify〉

〈notify〉

awaits 〈done〉 from v, x

– The notify from u is received at v, who sends a notify to w and must await
a done from w before it can send a done back to u. Concurrently, the notify
from u is received at x, who sends a grant to u and w, because requestsx = 0,
and must await an ack from both u and w before it can send a done back to u.

u

v w

x

〈notify〉

〈grant〉

〈grant〉

awaits 〈done〉 from w

awaits 〈ack〉 from u, wawaits 〈done〉 from v, x

– The notify from v is received at w, who sends a notify to x and must await a
done from x before it can send a done to v. Concurrently, the grant from x
is received at u, who sends an ack back to x immediately, because the grant
decreases requestsu from 2 to 1. Next, the grant from x is received at w, who
sends a grant to v, because requestsw decreases from 1 to 0, and must await an
ack from v before it can send an ack back to x.

5.2 Bracha-Toueg algorithm 33

u

v w

x

〈grant〉

〈ack〉

〈notify〉

awaits 〈ack〉 from v
awaits 〈done〉 from w

awaits 〈done〉 from v, x awaits 〈ack〉 from u, w

awaits 〈done〉 from x

– The notify from w is received at x, who sends a done back to w immediately.
Next, the ack from u is received at x, so that x only needs an ack from w in
order to send a done to u. Concurrently, the grant from w is received at v, who
sends a grant to u, because requestsv decreases from 1 to 0, and must await an
ack from u before it can send an ack back to w.

u

v w

x

〈done〉

awaits 〈ack〉 from v
awaits 〈done〉 from w

awaits 〈done〉 from v, x awaits 〈ack〉 from w

awaits 〈done〉 from x
awaits 〈ack〉 from u

〈grant〉

– The done from x is received at w, who can now send a done to v. Concurrently,
the grant from v is received at u, who decreases requestsu from 1 to 0 and sends
an ack back to v immediately, because there are no requests for u to grant.

u

v w

x

〈done〉

awaits 〈ack〉 from vawaits 〈done〉 from w
awaits 〈ack〉 from u

awaits 〈done〉 from v, x awaits 〈ack〉 from w

〈ack〉

– The done from w is received at v, who can now send a done to u. Next, the
ack from u is received at v, who can now send an ack to w.

34 5 Deadlock Detection

u

v w

x

〈ack〉

〈done〉

awaits 〈ack〉 from v

awaits 〈done〉 from v, x awaits 〈ack〉 from w

– The done from v is received at u, who now only awaits a done from x before
it can examine requestsu to see whether it is deadlocked. Concurrently, the ack
from v is received at w, who can now send an ack to x.

u

v w

x

〈ack〉

awaits 〈done〉 from x awaits 〈ack〉 from w

– The ack from w is received at x, who can now send a done to u.

u

v w

x

〈done〉
awaits 〈done〉 from x

– The done from x is received at u, who now examines that requestsu = 0, and
concludes that it is not deadlocked.

We argue that when the initiator completes its Notify call, the Bracha-Toueg al-
gorithm has terminated. The idea is that we can distinguish two types of trees. First,
by assuming that each node receiving a notify message for the first time makes the
sender its parent, we obtain a tree T rooted in the initiator. The notify/done mes-
sages construct T and travel through (part of) the network similar to the echo algo-
rithm (see section 4.3). Second, by assuming that each node receiving a grant mes-
sage that sets requests to 0 makes the sender its parent, we obtain disjoint trees Tv ,
each rooted in a node v where from the start requestsv = 0. Again, the grant/ack
messages construct Tv and travel through the network similar to the echo algorithm.
A noninitiator v that is the root of a tree Tv only sends a done to its parent in T when
all grant’s sent by nodes in Tv have been acknowledged. This implies that when the
initiator completes its Notify call, not only all notify’s but also all grant’s in the

Exercises 35

network have been acknowledged. So at that moment there are no messages in transit
or pending messages.

We argue that the Bracha-Toueg algorithm is deadlock-free. That is, the initiator
will eventually complete its Notify call. Namely, replying with a done (to a notify)
or ack (to a grant) is delayed by a node u only if it is executing Grantu because
requestsu is 0 (in case of done) or has become 0 by the grant (in case of an ack),
and u is awaiting ack’s. We note that there cannot be a cycle of nodes that sent a
grant to the next node and must wait before sending an ack to the previous node in
the cycle: such a cycle would always contain a node v of which requestsv was not
set to 0 by a grant from a node in this cycle. This implies that always some node
will be able to respond to a pending notify or grant.

As we said before, if after resolving the wait-for graph the initiator remains
blocked, then it is deadlocked in the snapshot. Namely, the Bracha-Toueg algorithm
cleans out the part of the wait-for graph that is reachable from the initiator as much
as possible. So if the initiator remains blocked, this means it is part of a cycle of
nodes waiting for each other.

In case of a communication deadlock (see example 5.1) the other direction also
holds: if the initiator is deadlocked when the snapshot is taken, then it will remain
blocked in the wait-for graph. In case of resource deadlock this only holds if resource
requests are granted nondeterministically (see exercise 5.6). Namely, as shown in ex-
ample 5.2, modeling resource deadlock means that removing one edge (in the exam-
ple, wu) may automatically mean the introduction of another edge (in the example,
wv). The Bracha-Toueg approach to resolving edges in wait-for graphs does not take
into account this automatic creation of edges.

Bibliographical notes

The Bracha-Toueg algorithm originates from [12].

Exercises

Exercise 5.1 Give one possible computation of the Bracha-Toueg algorithm on the
wait-for graph in example 5.5, with v as initiator.

Exercise 5.2 Let node u initiate a deadlock detection run in which the following
wait-for graph is computed.

36 5 Deadlock Detection

u

v

w

x

y

Give one possible computation of the Bracha-Toueg algorithm on this wait-for graph.

Exercise 5.3 Let node u initiate a deadlock detection run in which the wait-for graph
from the previous exercise is computed, with as only difference that w is waiting for
a 2-out-of-3 (instead of a 1-out-of-3) request. Give one possible computation of the
Bracha-Toueg algorithm.

Exercise 5.4 Give a computation on a wait-for graph in which freeu remains false
for some noninitiator u after running the Bracha-Toueg algorithm, while u is not
deadlocked in the basic algorithm.

Exercise 5.5 Suppose node u sends a request to node v, then purges this request, and
next sends another request to v. Let the purge message reach v first, then the second
request, and finally the first request. How should v process these three messages?

Exercise 5.6 Suppose that the order in which resource requests are granted is pre-
determined. Give an example of a snapshot with a resource deadlock that is not
discovered by the Bracha-Toueg algorithm.

Show that in case of a nondeterministic selection which resource request is
granted, the deadlock in your example may be avoided.

6

Termination Detection

In the previous chapter we looked at deadlocks, in which some processes are doomed
to wait for input forever. In the current chapter we turn our attention to the related
problem of termination. A distributed algorithm is terminated if all processes are in
a terminal state and no (basic) messages are in transit. Termination detection is a
fundamental and challenging problem in distributed computing because no process
has complete knowledge of the global configuration of the network. Moreover, a ter-
minated process may be reactivated by a message from another process, and absence
of messages in the network must be established.

The basic algorithm is the algorithm for which termination is being detected,
and the control algorithm is the termination detection algorithm employed for this
task. The control algorithm in general consists of two parts: termination detection
and announcement. The announcement part, called Announce, is straightforward; we
therefore focus on the termination detection part. Ideally, termination detection does
not require freezing the basic execution.

From the viewpoint of the control algorithm, a simple description of the process
states in the basic algorithm suffices. A process is either in an active state if it has not
terminated yet, or in a passive state if it has terminated. We are moreover interested
in send and receive events, to determine whether there are basic messages under way.
As for internal events, we are only interested in those that change a process state from
active to passive. A passive process becomes active again upon reception of a basic
message. So the abstract view on processes is as follows.

active

receive

send

receive
passive

internal

We will consider termination detection techniques based on maintaining trees of
active processes (section 6.1), dividing a fixed weight over the active processes and
basic messages (section 6.2), waves tagged with logical clock values (section 6.3),
and token-based traversal (section 6.4).

38 6 Termination Detection

6.1 Dijkstra-Scholten algorithm

The Dijkstra-Scholten algorithm is a termination detection algorithm for a central-
ized basic algorithm on an undirected network. The idea is to build a tree, rooted in
the initiator of the basic algorithm, which contains all active processes, and passive
ones that have active descendants in the tree. If a basic message from a process p
makes a process q active, then q becomes a child of p in the tree. A process can quit
the tree only if it is passive and has no children left in the tree. In that case, it informs
its parent that it is no longer a child. Termination is detected by the initiator when
the tree has disappeared.

To be more precise, initially the tree T consists only of the initiator. Each process
p maintains a child counter ccp that estimates from above its number of children in
T . Initially, this counter is zero at all processes. The control algorithm works as fol-
lows. When a process p sends a basic message m, it increases ccp by one, because
the receiver q may become active upon reception of m. When the message arrives at
q, either q joins T with parent p if q was not yet in T , or otherwise q sends an ac-
knowledgment to p that it is not a new child. Upon reception of an acknowledgment,
p decreases ccp by one. When a process in T is passive and its counter is zero, it
quits T . When a noninitiator quits T , it sends an acknowledgment to its parent that
it is no longer its child. Finally, when the initiator quits T , it calls Announce.

Example 6.1 We consider one possible computation of a basic algorithm supplied
with the Dijkstra-Scholten algorithm, on an undirected ring of three processes p, q, r.

– At the start, the initiator p sends basic messages to q and r, and sets ccp to 2.
Upon receipt of these messages, q and r both become active, and join T with
parent p.

– q sends a basic message to r, and sets ccq to 1. Upon receipt of this message, r
sends back an acknowledgment, which causes q to decrease ccq to 0.

– p becomes passive. (Since ccp = 2, it remains in T .)
– r becomes passive. Since ccr = 0, it sends an acknowledgment to its parent p,

which causes p to decrease ccp to 1.
– q sends a basic message to r, and sets ccq to 1.
– q becomes passive. (Since ccq = 1, it remains in T .)
– Note that all three processes are now passive, but there is still a message traveling

from q to r. Upon receipt of this message, r becomes active again, and joins T
with parent q.

– r becomes passive. Since ccr = 0, it sends an acknowledgment to its parent q,
which causes q to decrease ccq to 0.

– Since q is passive and ccq = 0, it sends an acknowledgment to its parent p, which
causes p to decrease ccp to 0.

– Since p is passive and ccp = 0, it calls Announce.

When all processes have become passive and all basic messages have been ac-
knowledged, clearly the tree T will eventually disappear, and the initiator will call

6.2 Weight-throwing algorithm 39

Announce. Conversely, since active processes and processes that sent a basic mes-
sage that did not yet reach its destination are guaranteed to be in T , the initiator only
calls Announce when the basic algorithm has terminated.

The Shavit-Francez algorithm generalizes the Dijkstra-Scholten algorithm to de-
centralized basic algorithms. The idea is to maintain not one tree, but a forest of
(disjoint) trees, one for each initiator. Initially, each initiator constitutes a tree in the
forest. A process can only join a tree if it is not yet in a tree in the forest. For the
rest, the algorithm proceeds exactly as the Dijkstra-Scholten algorithm. The only
distinction is that when an initiator detects that its tree has disappeared, it cannot
immediately call Announce. Instead, the initiator starts a wave, tagged with its ID,
in which only processes that are not in a tree participate, and the decide event calls
Announce. If such a wave does not complete, this is not a problem, because then an-
other initiator of which the tree has not yet disappeared will start a subsequent wave.
And the last tree to disappear is guaranteed to start a wave that will complete.

Example 6.2 We consider one possible computation of a basic algorithm supplied
with the Shavit-Francez algorithm, on an undirected ring of three processes p, q, r.

– At the start, the initiators p and q both send a basic message to r, and set ccp and
ccq to 1. Next, p and q become passive.

– Upon receipt of the basic message from p, r becomes active and makes p its
parent. Next, r receives the basic message from q, and sends back an acknowl-
edgment, which causes q to decrease ccq to 0.

– Since q became passive as the root of a tree, and ccq = 0, it starts a wave. This
wave does not complete, because p and r refuse to participate.

– r sends a basic message to q, and sets ccr to 1. Next, r becomes passive.
– Upon receipt of the basic message from r, q becomes active, and makes r its

parent. Next, q becomes passive, and sends an acknowledgment to its parent r,
which causes r to decrease ccr to 0.

– Since r is passive and ccr = 0, it sends an acknowledgment to its parent p, which
causes p to decrease ccp to 0.

– Since p became passive as the root of a tree, and ccp = 0, it starts a wave. This
wave completes, so that p calls Announce.

6.2 Weight-throwing algorithm

In weight-throwing termination detection, for a centralized basic algorithm on a di-
rected network, the initiator is given a certain amount of weight. During a computa-
tion, this weight is divided over active processes and basic messages in transit. Every
time a basic message is sent, the sender transfers some (but not all) of its weight
to the message. And every time a basic message is received, the receiver adds the
weight of the message to its own weight. When a noninitiator becomes passive, it
returns its weight to the initiator (possibly via some other processes, in case there is
no direct channel to the initiator). When the initiator is passive and has regained its
original weight, it calls Announce.

40 6 Termination Detection

Example 6.3 We consider one possible computation of a basic algorithm supplied
with the weight-throwing algorithm on an undirected ring of three processes p, q, r.

– At the start, the initiator p has weight 12. It sends basic messages to q and r, with
weight 6 and 3, respectively, and reduces its own weight to 3. Upon receipt of
these messages, q and r become active, with weight 6 and 3.

– q sends a basic message to r, with weight 3, and reduces its own weight to 3.
Upon receipt of this message, r increases its weight to 6.

– p becomes passive. (Since it has weight less than 12, it does not yet call An-
nounce.)

– r becomes passive, and sends a control message to p, returning its weight 6. Upon
receipt of this message, p increases its weight to 9.

– q sends a basic message to r, with weight 1.5, and reduces its own weight to 1.5.
– q becomes passive, and sends a control message to p, returning its weight 1.5. At

receipt of this message, p increases its weight to 10.5.
– Note that all three processes are now passive, but there is still a message traveling

from q to r. Upon receipt of this message, r becomes active again, with weight
1.5.

– r becomes passive again. It sends a control message to p, returning its weight
1.5. At receipt of this message, p increases its weight to 12. Since p is passive, it
calls Announce.

When all processes have become passive and there are no basic messages in
transit, clearly all weight will eventually be returned to the initiator, who will then
call Announce. Conversely, since all active processes and basic messages carry some
weight, it is guaranteed that the initiator detects termination only when all processes
are passive and there are no basic messages in transit.

The Achilles heel of this simple and effective termination detection scheme is
underflow: the weight at a process can become too small to be divided further. Two
solutions have been proposed for this problem.

The first solution is that a process p where underflow occurs gives itself extra
weight. If p is a noninitiator, it must send a control message to the initiator that more
weight has been introduced in the system, for else the initiator could call Announce
prematurely. To avoid race conditions, p must wait for an acknowledgment from the
initiator before it can continue sending basic messages. Otherwise, the initiator could
regain its original weight before the control message from p has reached it.

The second solution is that p starts a weight-throwing termination detection sub-
call. Then p only returns its weight to the initiator when it has become passive and its
subcall has terminated. The weights originating from the initiator and from p must
be maintained separately.

6.3 Rana’s algorithm

Rana’s algorithm detects termination for a decentralized basic algorithm on an undi-
rected network. It exploits waves that carry a clock value provided by a logical clock

6.3 Rana’s algorithm 41

(see chapter 2). Each basic message is acknowledged, so that a process can determine
whether all the basic messages it sent have reached their destination.

To understand Rana’s algorithm, it is helpful to first consider an incorrect ter-
mination detection algorithm, which uses waves without clock values. Let a process
become quiet if (1) it is passive, and (2) all the basic messages it sent have been
acknowledged. Then it starts a wave, tagged with its ID. Only quiet processes take
part in this wave. If a wave completes, its initiator calls Announce. Note that there
can be multiple concurrent waves; each process must keep track of its state in each
of these waves.

The problem with this termination detection algorithm is that a process p that was
not yet visited by a wave may make a quiet process q that already took part in the
wave active again. After that p may become quiet, and take part in the wave. Then
the wave can complete while q is active.

To avoid this scenario, a logical clock provides each event with a time stamp. The
time stamp of a process is the highest time stamp of its events so far (initially it is
zero). As we said, each basic message is acknowledged, and a process becomes quiet
if (1) it is passive, and (2) all the basic messages it sent have been acknowledged.
Then it starts a wave, tagged with its ID and its time stamp t. Only quiet processes
that have been quiet from some logical time ≤ t onward take part in this wave. If a
wave completes, its initiator calls Announce.

Actually, Rana’s algorithm does not require a full-blown logical clock. It suffices
if only the control messages (acknowledgments and wave messages) are taken into
account. That is, a wave tagged with time stamp t puts the clock of each recipient to
t (if its value is not ≥ t already), and each acknowledgment is tagged with the time
stamp t′ of the sender and puts the clock of the receiver to t′ + 1 (if its value is not
≥ t′ + 1 already).

Example 6.4 We consider one possible computation of a basic algorithm supplied
with Rana’s algorithm, using logical time stamps, on an undirected ring of three
processes p, q, r.

– Initially, p, q, and r all have logical time 0, and only p is active. It sends ba-
sic messages m1 to q and m2 to r. The corresponding receive events of these
messages make q and r active. Next, they send an acknowledgment 〈a1, 0〉 and
〈a2, 0〉 to p, respectively.

– p and q become passive. Moreover, p receives both acknowledgments, setting its
time to 1. Next, p and q both start a wave, tagged with 1 and 0, respectively. The
wave of p first visits q, setting its time to 1; q takes part in the wave, because it is
quiet from time 0 onward. The wave of q first visits r, which refuses to take part
in the wave, because it is active.

– r sends a basic message m3 to q. Upon receipt of this message, q becomes active
and sends back an acknowledgment 〈a3, 1〉. When r receives this acknowledg-
ment, its clock value becomes 2.

– q and r become passive. Next, r refuses to take part in p’s wave, because r is
quiet from time 2 onward, while the wave is tagged with 1.

42 6 Termination Detection

– q and r both start a wave, tagged with 1 and 2, respectively. The wave of r
completes, and r calls Announce.

We argue that Rana’s algorithm is a correct termination detection algorithm.
When the basic algorithm has terminated, Rana’s algorithm will eventually call An-
nounce. Namely, each process eventually becomes quiet, when all the basic message
it sent have been acknowledged; and when a process becomes quiet, it starts a wave.
Suppose a wave, tagged with some time stamp t, does not complete. Then some pro-
cess does not take part in the wave, so (by the wave) it is not quiet at some time > t.
When that process becomes quiet, it starts another wave, tagged with some t′ > t.
This implies that when all processes have become quiet, eventually some wave, with
the largest time stamp among all waves, is guaranteed to complete.

Conversely, when Rana’s algorithm calls Announce, the basic algorithm has ter-
minated. Namely, let a wave complete. Suppose, toward a contradiction, that at that
moment the basic algorithm has not terminated. Then some process is active, or some
basic message is in transit. Since only quiet processes take part in a wave, such a sit-
uation can arise only if a quiet process p was first visited by the wave, and then made
active again by a basic message m from a process q that was not yet visited by the
wave. Note that q can take part in the wave only after it has received an acknowledg-
ment for m from p. Let the wave be tagged with time stamp t. When p takes part in
the wave, its logical time becomes at least t. So the acknowledgment from p to q sets
the logical time of q to a value greater than t. However, this means that q is not quiet
from a logical time ≤ t, so it cannot take part in the wave. This contradicts the fact
that the wave completes. So at the moment the wave completes, the basic algorithm
must have terminated.

6.4 Safra’s algorithm

Safra’s algorithm is a traversal-based termination detection algorithm. A token visits
every process in the network, and only passive processes can forward the token.
Although Safra’s algorithm is centralized, the basic algorithm can be decentralized.
The network can be directed. Note that a traversal of the entire network is always
feasible, owing to the fact that networks are assumed to be strongly connected.

There are two complications. First, it must be determined whether there are basic
messages in transit. In case of a directed network, there is no simple acknowledgment
scheme for basic messages. The second complication is that a traversal of passive
processes does not guarantee termination. Namely, a traversal-based algorithm can
give rise to an execution similar to the counterexample to the flawed termination
detection algorithm presented at the start of section 6.3. An active process p may
make a passive process that was already visited by the token active again, after which
p becomes passive and forwards the token.

To cope with these complications, in Safra’s algorithm every process maintains
a counter of type integer; initially it is zero. At each outgoing or incoming basic
message, the counter is increased or decreased, respectively. Each round trip, the
token carries the sum of the counters of the processes it has traversed.

6.4 Safra’s algorithm 43

At any time, the sum of all counters in the network is nonnegative, and it is zero
if and only if no basic message is in transit. Still, the token may compute a negative
sum for a round trip, if a passive process that already forwarded the token receives
a basic message, becomes active, and sends basic messages that are received by a
process before this same token arrives.

This scenario is dealt with by coloring processes black after receiving a basic
message. Initially, all processes are white. When the initiator of the control algo-
rithm becomes passive, it sends a white token, carrying integer value 0, and the ini-
tiator becomes white. When a process receives the token, it adds its counter value to
the integer value of the token. A noninitiator must wait until it is passive, and then
forwards the token. A white noninitiator leaves the color of the token unchanged.
A black noninitiator colors the token black, while the process itself becomes white.
Eventually, the token returns to the initiator. If the token and the initiator are white,
and the integer value of the token is zero, then the initiator calls Announce. Other-
wise, the initiator waits until it is passive, sends a white token carrying integer value
0 again, and becomes white.

Example 6.5 We consider one possible computation of a basic algorithm supplied
with Safra’s algorithm on the following directed network.

q

rs

p

Initially, the token is at the initiator p, only s is active, all processes are white with
counter 0, and there are no messages in transit. First, s sends a basic message m to
q, setting the counter of s to 1. Now s becomes passive. The token travels around the
network, and returns to p white with sum 1. Next, the token travels on from p via q to
r, white with sum 0. The message m travels to q and back to s, making them active
and black, with counter 0. Now s becomes passive, and the token travels from r via
s to p, black with sum 0. Note that s becomes white. Finally, q becomes passive, and
after two more round trips of the token (one round trip is needed to color q white), p
calls Announce.

When all processes have become passive, the token will eventually color them
all white. And when there are no messages in transit, the counters of the processes
sum up to zero. So in that case the token will return to the initiator colored white
and with integer value zero, after which the initiator calls Announce. Conversely, if
the token returns to the initiator colored white, all processes have been passive and
did not receive any messages since the completion of the previous round trip of the
token. If, moreover, the token has integer value zero, this implies that no messages
are in transit. Hence, the basic algorithm has terminated.

44 6 Termination Detection

An optimization of Safra’s algorithm does away with black tokens. Instead, when
a black process p holds the token, it purges the token. As soon as p is passive, it
becomes white and sends a fresh token, carrying the counter value of p, and tagged
with the p’s ID. Suppose the token completes the round trip, meaning that it reaches
p, tagged with p. As soon as p is passive, it checks whether p is white and the token’s
integer value is zero. If so, p calls Announce. Otherwise, p purges the token, becomes
white, and sends a fresh token, as explained earlier.

Bibliographical notes

The Dijkstra-Scholten algorithm originates from [26], and the Shavit-Francez algo-
rithm from [72]. Weight throwing was proposed in [54]. Rana’s algorithm stems from
[66]. Safra’s algorithm was presented in [25].

Exercises

Exercise 6.1 [76] How much time does the Dijkstra-Scholten algorithm need at
most to call Announce after the basic algorithm has terminated?

Exercise 6.2 Give a computation of the Shavit-Francez algorithm with two initia-
tors, in which one of the initiators becomes active again after it has become passive,
and both initiators concurrently call Announce.

Exercise 6.3 Consider weight-throwing termination detection, where in case of un-
derflow at a process p, it gives itself extra weight, and informs the initiator. Give an
example to show that if p would not wait for an acknowledgment from the initiator,
then the initiator could prematurely detect termination.

Exercise 6.4 Consider the following computation of a decentralized basic algorithm
on an undirected ring of size three, with processes p, q and r, where p and q are the
initiators. First, p sends a message to q and r and becomes passive, while q sends a
message to r. When q receives p’s message, it also becomes passive. After reception
of the messages from first p and then q, r sends a message to both p and q and
becomes passive. After reception of the message from r, p and q send a message to
each other, and after reception of these messages become passive.

Add the following termination detection algorithms on top of the basic algorithm,
and in each case extend the computation with control messages, to explain how ter-
mination is detected.

(a) The Shavit-Francez algorithm.
(b) Rana’s algorithm.
(c) Safra’s algorithm, with p as initiator of this control algorithm.

Exercises 45

Exercise 6.5 Suppose that Rana’s algorithm is adapted as follows: only quiet pro-
cesses that have been quiet from some logical time < t (instead of ≤ t) onward can
take part in a wave tagged with time stamp t. Give an example of a finite computation
for which termination would not be detected.

Exercise 6.6 Give an example to show that in Safra’s algorithm, coloring sending
processes black (instead of receiving ones) is incorrect.

Exercise 6.7 In Safra’s algorithm, certain messages do not need to color the receiver
black. Only messages that are sent after a token visits the sender and that are received
before this same token visits the receiver have to be taken into account. Propose an
optimization of Safra’s algorithm based on this observation.

Exercise 6.8 [76] Safra’s algorithm can be viewed as a snapshot algorithm. Every
tour of the token, each process takes a local snapshot when it handles the token. In
the constructed snapshot all processes are passive, because the token is handled only
by passive processes. Explain how the token’s message integer color and value (when
the token arrives back at the initiator) capture the consistency and channel states of
the snapshot. In particular, argue that the following two claims are true.

1. If the token is white, the snapshot is consistent.
2. If moreover the token’s integer value is zero, all channels are empty.

7

Garbage Collection

Each process is provided with memory to store, for example, its local state. An object
in memory can carry references to other objects, possibly in the memory of other
processes. A reference to a local object, which is located at the same process, is
called a pointer, to distinguish it from a reference to a remote object, which is located
at another process. An object needs to be kept in memory only if it is accessible by
navigating from a root object. An object is garbage if it cannot be accessed from any
root object.

Garbage collection aims to automatically detect and reclaim inaccessible mem-
ory objects, in order to free up memory space. The two main techniques for garbage
collection are reference counting and tracing. Reference counting, which counts the
number of references to an object, is discussed in section 7.1. Tracing, which marks
all objects reachable from the root objects, is discussed in section 7.3.

7.1 Reference counting

Reference counting is based on keeping track of the number of references to an
object; if it drops to zero, and there are no pointers to the object, the object is garbage.

An advantage of reference counting is that it can be easily performed at run-
time. A disadvantage is that cyclic garbage, that is, a cycle of references between
garbage objects, is not detected. A separate technique must be added to try and detect
such cycles. For instance, a nonroot object that is suspected to be part of cyclic
garbage may be virtually deleted. That is, a separate set of reference counts is used
to propagate the effects of this trial deletion. If the trial count of the trial-deleted
object drops to zero, then it confirms that the object is garbage. In that case, it can be
physically deleted.

The owner of an object O, that is, the process where O is located, can easily
count the (local) pointers to O. But the challenge is to keep track of the number of
(remote) O-references. We distinguish three operations in which processes build or
delete a reference to an object O:

48 7 Garbage Collection

• Creation: the owner of O sends an O-pointer to another process.
• Duplication: a process that is not the owner of O sends an O-reference to another

process.
• Deletion: an O-reference is deleted, because it has become obsolete.

Reference counting must take into account messages that duplicate a reference.
Otherwise, an object could be reclaimed prematurely, if there are no pointers and
references to it, but a message is carrying a duplicated reference to this object. One
solution is that a process wanting to duplicate a reference must first inform the object
owner; the reference is duplicated only after the receipt of the owner’s acknowledg-
ment. The drawback of this approach is high synchronization delays. We now discuss
two different approaches to avoid such delays.

Indirect reference counting

One method to avoid having to inform the object owner when a reference is dupli-
cated is to maintain a tree for each object, with the object at the root, and the refer-
ences to this object as the other nodes in the tree. Each reference keeps track where
it was duplicated or created from, that is, it stores its parent in the tree. Objects and
references are provided with a counter, estimating from above how many children
they have in the tree: the counter at an object keeps track how many references to
the object have been created, while the counter at a reference keeps track how many
times the reference has been duplicated.

When a process receives a reference to an object but already holds a reference to
or owns this object, it sends back a decrement to decrease the counter at the sender.
A deleted reference can be restored, in case a duplication or creation of this reference
is received before its counter has become zero.

When a duplicated (or created) reference has been deleted, and its counter is
zero, a decrement message is sent to the process where it was duplicated from (or
to the object owner). When the counter of the object becomes zero, and there are no
pointers to it, the object can be reclaimed.

Example 7.1 We consider one possible computation with indirect reference count-
ing, on an undirected ring of three processes p, q, r. Let p hold one pointer to the
object O.

– p sends O-references to q and r, and sets its counter of created O-references to
2. Upon receipt of these messages, q and r build an O-reference.

– q sends an O-reference to r, and increases its counter of duplicated O-references
to 1. Upon receipt of this message, r sends back a decrement message to q, be-
cause it already holds an O-reference. Upon receipt of this message, q decreases
its counter back to 0.

– p deletes its O-pointer. (Since its counter is 2, O cannot yet be reclaimed by the
garbage collector.)

– r deletes its O-reference. Since its counter is 0, r sends a decrement message to
p, which causes p to decrease its counter to 1.

7.1 Reference counting 49

– q sends an O-reference to r, and increases its counter to 1.
– q deletes its O-reference. (Since its counter is 1, q does not yet send a decrement

message to p.)
– Note that there is no pointer or reference to O, but there is still an O-reference

traveling from q to r. Upon receipt of this message, r builds an O-reference.
– r deletes its O-reference. Since its counter is 0, r sends a decrement message to

q, which causes q to decrease its counter to 0.
– Since q holds no O-reference and its counter is 0, it sends a decrement message

to p, which causes p to decrease its counter to 0.
– Since p holds no O-pointer and its counter is 0, O can be reclaimed by the

garbage collector.

Weighted reference counting

Another method to avoid having to inform the object owner when a reference is
duplicated is to provide each object with a total weight. References are provided
with a part of the weight of the object to which they refer. Each object maintains a
partial weight that was not yet handed out to references to the object. Initially, the
partial weight of an object equals its total weight.

When a reference is created, the partial weight of the object is divided over the
object and the reference. That is, the object owner gives some weight to the message
responsible for creating this reference, and it deducts this weight from the partial
weight of the object. When the message arrives at its destination, either the refer-
ence is created with the weight of the message, if the process does not yet hold a
reference to this object, or the weight of the message is added to this reference other-
wise. Likewise, when a reference is duplicated, the weight of the reference is divided
over itself and the copy (except when the reference happens to be duplicated to the
object owner, in which case the weight is subtracted from the total weight of the
object). When a reference is deleted, the object owner is notified, and the weight of
the deleted reference is subtracted from the total weight of the object. When the total
weight of the object becomes equal to its partial weight, and there are no pointers to
the object, it can be reclaimed.

Example 7.2 We consider one possible computation with weighted reference count-
ing, on an undirected ring of three processes p, q, r. Let p hold one pointer to the
object O, which has total and partial weight 12.

– p sends O-references to q and r, with weight 6 and 3, respectively, and reduces
the partial weight of O to 3. Upon receipt of these messages, q and r build an
O-reference, with weight 6 and 3.

– q sends an O-reference to r, with weight 3, and reduces the weight of its O-
reference to 3. Upon receipt of this message, r increases the weight of its O-
reference to 6.

– p deletes its O-pointer. (Since the partial weight of O is less than its total weight,
O cannot yet be reclaimed by the garbage collector.)

50 7 Garbage Collection

– r deletes its O-reference, and sends a control message to p with weight 6. Upon
receipt of this message, p decreases the total weight of O to 6.

– q sends an O-reference to r, with weight 1.5, and decreases the weight of its
O-reference to 1.5.

– q deletes its O-reference, and sends a control message to p with weight 1.5. Upon
receipt of this message, p decreases the total weight of O to 4.5.

– Note that there is no pointer or reference to O, but there is still an O-reference
traveling from q to r. Upon receipt of this message, r builds an O-reference, with
weight 1.5.

– r deletes its O-reference, and sends a control message to p with weight 1.5.
Upon receipt of this message, p decreases the total weight of O to 3. Since the
partial and total weight of O are now equal, and p holds no O-pointer, O can be
reclaimed by the garbage collector.

Just as with weight-throwing termination detection, a drawback of weighted ref-
erence counting is the possibility of underflow: when the weight of a reference be-
comes too small to be divided further, no more duplication is possible. There are two
possible solutions:

1. The reference increases its weight and tells the object owner to increase its total
weight. An acknowledgment from the object owner to the reference is needed
before it can be duplicated, to avoid race conditions.

2. The process at which the underflow occurs creates an artificial object, with a
reference to the original object. Duplicated references are then to the artificial
object, so that references to the original object become indirect.

7.2 Garbage collection implies termination detection

At first sight, garbage collection has little in common with termination detection dis-
cussed in the previous chapter. On the other hand, the garbage collection algorithms
in the previous section may have reminded you of some of the termination detection
algorithms discussed before. This is not a coincidence. It turns out that garbage col-
lection algorithms can be transformed into (existing and new) termination detection
algorithms. This works as follows.

Given a basic algorithm. Let each process p host one artificial root object Op.
There is also a special nonroot object Z. Initially, only initiators p hold a reference
from Op to Z. Each basic message carries a duplication of the Z-reference. When a
process becomes passive, it deletes its Z-reference. When a process becomes active,
it immediately duplicates a Z-reference, owing to the fact that all basic messages
carry a Z-reference.

The basic algorithm is terminated if and only if Z is garbage. Namely, if all
processes are passive and there are no messages in transit, then clearly there is no
Z-reference. And vice versa, if there is an active process or a message in transit, it
holds (a duplication of) the Z-reference.

7.3 Tracing 51

This transformation turns indirect reference counting into Dijkstra-Scholten ter-
mination detection (see exercise 7.6), and weighted reference counting into a slight
variation of weight-throwing termination detection (see exercise 7.7). Note that ex-
amples 7.1 and 7.2 are basically identical to examples 6.1 and 6.3, respectively, but
in the context of garbage collection instead of termination detection.

7.3 Tracing

Tracing (or mark-scan) garbage collection consists of two phases. The first phase
consists of a traversal of all accessible objects, starting from the root objects; the ac-
cessible objects are marked. In the second phase, all unmarked objects are reclaimed.

An advantage of this approach, compared to reference counting, is that it detects
all garbage, including cyclic garbage. A disadvantage is that it tends to require freez-
ing the basic execution. In spite of this drawback, tracing has become much more
widely used than reference counting, since it has become the method of choice for
garbage collection within Java. A key to this success has been the division of objects
into two generations.

There are two standard ways to perform the second phase of tracing, in which
unmarked objects are reclaimed.

• Mark-copy: copy all marked objects to contiguous empty memory space.
• Mark-compact: compact all marked objects in the current memory space.

Copying is significantly faster than compaction, because marked objects are copied
without changing the memory structure. However, in the long run copying leads to a
fragmentation of the memory space.

In practice, most objects either can be reclaimed shortly after their creation, or
stay accessible for a very long time. This observation is exploited by generational
garbage collection, in which objects are divided into two generations. Garbage in
the young generation is collected frequently using mark-copy, while garbage in the
old generation is collected sporadically using mark-compact. A newly created object
starts in the young generation. If it stays accessible for a certain amount of time (or
for a certain number of garbage collection runs), it is moved from the young to the
old generation.

Bibliographical notes

The technique to detect cyclic garbage mentioned at the start of this chapter origi-
nates from [79]. Indirect reference counting was put forward in [64], and weighted
reference counting was proposed independently in [10] and [80]. The derivation of
termination detection algorithms from garbage collection algorithms is due to [77].
Generational garbage collection stems from [49].

52 7 Garbage Collection

Exercises

Exercise 7.1 Give an example of cyclic garbage where trial deletion of one object
does not help to detect garbage.

Exercise 7.2 Consider the following computation of a basic algorithm on an undi-
rected ring of size three, with processes p, q, and r, where p owns an object O.
Initially, there is one O-pointer. First, p sends a message to q and r, both containing
a created O-reference. Next, p deletes the O-pointer. At arrival of the message from
p, q and r create an O-reference. Now q and r send a message to each other, both
containing a duplicated O-reference, and delete their O-reference. At arrival of these
messages, q and r create an O-reference again. Finally, q and r both delete their
O-reference.

Explain for each of the following two garbage collection algorithms how it is
detected that O has become garbage.

(a) Indirect reference counting.
(b) Weighted reference counting.

Exercise 7.3 Argue the correctness of indirect as well as weighted reference count-
ing.

Exercise 7.4 In weighted reference counting, why is underflow much more likely to
happen than overflow of a reference counter?

Exercise 7.5 Consider solution 1 for dealing with underflow in weighted reference
counting. Give an example to show that if the process where the weight is increased
would not wait for an acknowledgment from the object owner, then the object owner
could prematurely mark the object as garbage.

Exercise 7.6 Show, using the technique from section 7.2, that indirect reference
counting gives rise to Dijkstra-Scholten termination detection.

Exercise 7.7 Show, using the technique from section 7.2, that weighted reference
counting gives rise to a variation of weight-throwing termination detection, in which
the initiator cannot reuse weight that was returned to it. Also take into account solu-
tion 1 in case of underflow.

8

Routing

When a process wants to send a message to another process in the network that is
not a direct neighbor, the message needs to be routed through the network. Especially
for the Internet, effective routing algorithms are of vital importance. Each process q
maintains a routing table, which stores for each destination p �= q the distance of
q to p as well as a neighbor r of q: each message with destination p that arrives
at q is passed on to r. We assume that each channel c is provided with a positive
weight weight(c), and will discuss algorithms that route messages via shortest paths,
meaning that the sum of the weights of the traversed channels is minimal.

8.1 Chandy-Misra algorithm

The Chandy-Misra algorithm is a centralized routing algorithm (also called single-
source shortest path algorithm) for undirected networks. It computes a sink tree con-
sisting of shortest paths to the initiator.

Each process p maintains values distp and parentp, where distp is the length
of the shortest known path from p to the initiator, and parentp the process after
p on this path. Initially, the variable dist at the initiator has value 0, distp = ∞
(that is, infinity) for each noninitiator p, and parentp =⊥ (that is, undefined) for all
processes p.

The algorithm starts with messages 〈dist, 0〉, which the initiator sends to all its
neighbors, informing them that the initiator knows a path to itself of distance 0.

When a process p receives a message 〈dist, d〉 from a neighbor q, it checks
whether d+weight(pq) < distp. If yes, p has found a shorter path to the initiator via
q, so it changes distp into d+weight(pq) and parentp into q, and communicates the
improved estimate to all neighbors except q in the form of a message 〈dist, distp〉.
If no, p simply purges the incoming message from q.

A termination detection algorithm has to be used on the side. For instance, one
could employ the Dijkstra-Scholten algorithm (see section 6.1).

54 8 Routing

Example 8.1 We consider the longest possible computation of the Chandy-Misra
algorithm on the following network, with initiator p.

p

q

r

s

t
1
2

1
8

1
2

1
2

1
8

1
8

Initially, distp = 0 and distq = distr = dists = dist t = ∞, while parent =⊥ at
all five processes.

– p sends 〈dist, 0〉 to q and r.
– When p’s message arrives at q, distq ← 1

2 and parentq ← p, and q sends
〈dist, 1

2 〉 to r.
– When q’s message arrives at r, distr ← 1 and parentr ← q, and r sends

〈dist, 1〉 to p, s and t.
– p purges r’s message.
– When r’s message arrives at s, dists ← 9

8 and parents ← r, and s sends
〈dist, 9

8 〉 to t.
– When s’s message arrives at t, dist t ← 5

4 and parent t ← s, and t sends 〈dist, 5
4 〉

to r.
– r purges t’s message.
– When r’s message arrives at t, dist t ← 9

8 and parent t ← r, and t sends 〈dist, 9
8 〉

to s.
– s purges t’s message.
– When p’s message (finally) arrives at r, distr ← 1

2 and parentr ← p, and r
sends 〈dist, 1

2 〉 to q, s and t.
– q purges r’s message.
– When r’s message arrives at s, dists ← 5

8 and parents ← r, and s sends
〈dist, 5

8 〉 to t.
– When s’s message arrives at t, dist t ← 3

4 and parent t ← s, and t sends 〈dist, 3
4 〉

to r.
– r purges t’s message.
– When r’s message arrives at t, dist t ← 5

8 and parent t ← r, and t sends 〈dist, 5
8 〉

to s.
– s purges t’s message.

We argue that the Chandy-Misra algorithm computes shortest paths toward the
initiator. A safety property of the algorithm is that any process p with distp < ∞ has
a shortest path to the initiator with weight at most distp. Namely, this property holds
initially, and is an invariant: if p receives a message 〈dist, d〉 from a neighbor q, then
there is a path from p via q to the initiator with weight at most d + weight(pq); so
(even) if p changes distp into d + weight(pq), the property is preserved. We now

8.2 Merlin-Segall algorithm 55

reason that for each process p, distp will eventually attain the weight of a shortest
path from p to the initiator, by induction on the number of channels in such a path.
The base case, where p is the initiator, is trivial, because then distp is 0 from the start.
In the inductive case, let a shortest path from p to the initiator start with the channel
pq. By induction, eventually distq will attain the weight of a shortest path from q to
the initiator; this path cannot go via p, because channels carry positive weights. So
q will send 〈dist, distq〉 to p, and at reception of this message, distp will equal the
weight of a shortest path from p to the initiator. Finally, if p is a noninitiator, then a
shortest path from p to the initiator goes via parentp, because parentp is updated at
each improvement of distp.

The worst-case message complexity of the Chandy-Misra algorithm is exponen-
tial, since there can be exponentially many different cycle-free paths from a process
to the initiator, which may be discovered in decreasing order of weight (see exercise
8.3). In case of minimum-hop paths in unweighted networks (in other words, each
channel has weight 1), the worst-case message complexity of computing shortest
paths to all processes in the network drops down to O(N2E). Namely, for each pro-
cess, the algorithm requires at most O(NE) messages to compute all shortest paths
to this process: the longest cycle-free path has at most length N − 1, so each process
sends at most N − 1 messages to its neighbors. In case of minimum-hop paths, the
sink tree forms a breadth-first search tree.

8.2 Merlin-Segall algorithm

The Merlin-Segall algorithm is a centralized algorithm to compute all shortest paths
to the initiator. The underlying idea is to bring structure to the Chandy-Misra algo-
rithm by letting it proceed in rounds. In each round, distance messages à la Chandy-
Misra flow up and down the sink tree similar to the echo algorithm, and distance
values are updated. At the end of each round, the sink tree is restructured.

Initially, after round 0, the variable dist at the initiator has value 0, distp = ∞
for each noninitiator p, and the parentp values form a sink tree with the initiator as
root. Such a sink tree can be built by means of a centralized wave algorithm from
chapter 4.

Each round > 0 is started by the initiator, which sends the message 〈dist, 0〉 to
its neighbors, to inform them that the initiator has a shortest path to itself of length
0.

Let a noninitiator p receive a message 〈dist, d〉 from a neighbor q.

• If d+weight(pq) < distp, then distp ← d+weight(pq) (and p stores q as future
value for parentp).

• If q = parentp, then p sends 〈dist, distp〉 to its neighbors except q.

When p has received a message from all its neighbors in the current round, it sends
〈dist, distp〉 to parentp, and moves to the next round. If p updated distp in the last
round, then p updates parentp to the neighbor whose message is responsible for the

56 8 Routing

current value of distp. The initiator starts a new round after it has received a message
from all its neighbors in the current round.

After round n ≥ 0, for each process p with a shortest path to the initiator that
consists of ≤ n channels, distp and parentp have achieved their ultimate value. This
is easy to see by induction on n. The base case n = 0 is trivial, because at the initiator
the variables dist and parent have value 0 and ⊥ from the start. Now consider the
inductive case: a noninitiator p with a shortest path of ≤ n + 1 channels to the
initiator. Let pq be the first channel in this path. Then process q has a shortest path of
≤ n channels to the initiator. By the induction hypothesis, after round n, distq has
obtained its ultimate value. So in round n + 1, p receives the message 〈dist, distq〉
from q. Therefore, distp and parentp have achieved their ultimate values at the end
of round n+ 1. Since shortest paths consist of at most N − 1 channels, the Merlin-
Segall algorithm can terminate after round N − 1.

Example 8.2 We consider one possible computation of the Merlin-Segall algorithm
on the following undirected network. The original sink tree, after round 0, consists
of edges qr, rp, and sp.

p q

rs

4 3

1

1

51

The computation determines the correct sink tree toward the initiator p only at the
end of round 3, because (1) there is a shortest path of length three, (2) we start with a
sink tree that has nothing in common with the correct sink tree, and (3) every round
we let messages in the opposite direction of the sink tree travel very fast, so that
processes send messages to their neighbors early on.

The five pictures below show one possible progression of round 1. Process names
and channel weights are omitted from these pictures. Messages that are depicted with
a solid arrow head are toward a parent. In the first picture, p has sent out messages
〈dist, 0〉. In the second picture, r and s have received this message from their par-
ent p, computed distances 5 and 4, and sent 〈dist, 5〉 and 〈dist, 4〉, respectively, to
their other neighbors. In the third picture, q has received 〈dist, 5〉 from its parent r,
computed distance 8, and sent 〈dist, 8〉 to its other neighbors. In the fourth picture, s
has received 〈dist, 8〉 from q and 〈dist, 5〉 from r, sent 〈dist, 4〉 to its parent p, and
made p its parent (again); moreover, q has received 〈dist, 0〉 from p and 〈dist, 4〉
from s, computed an improved distance 1, sent 〈dist, 1〉 to its parent r, and made p
its new parent. In the fifth picture, r has received 〈dist, 1〉 from q and 〈dist, 4〉 from
s, computed an improved distance 4, sent 〈dist, 4〉 to its parent p, and made q its new
parent. When the three messages traveling toward p have reached their destination,
round 2 is started.

8.2 Merlin-Segall algorithm 57

0 ∞

∞∞

0 ∞

54

0 8

54

5

0 0 0

0

55 4

0 8

4

4

4

8

1

54

0 1

44

0

4

1

4 4

8 8

4

The depictions of the other two rounds are given without further explanations, as
they are similar to round 1. The five pictures below show one possible progression
of round 2.

0 1

44

0 1

44

0 1

44

0

0

44

4

4

1

42

0 1

42

0

2 2

1

1 1
1

0 0 0

4

4 4
4

4

4

Finally, the five pictures below show one possible progression of round 3.

58 8 Routing

0 1

42

0 1

42

0 1

42

0

42

1

32

0 1

32

0

2

1

1
1

0 0 0

4

4 4
3

2

0 0 0

2

2

Now the computation has terminated. In the terminal configuration, the correct short-
est paths toward p have been computed, leading from r to s to q to p.

The message complexity of the Merlin-Segall algorithm is Θ(N2E). Namely,
for each root, the algorithm requires (N − 1)2E messages: in N − 1 rounds, two
messages travel through each channel.

The Merlin-Segall algorithm can be adapted to make it robust against topology
changes. When a channel fails or becomes operational, the adjacent processes send
a special control message toward the initiator via the sink tree. If the failed channel
happens to be a tree edge, then the remaining tree is extended to a complete sink tree
toward the initiator again. If the special control message meets a failed tree edge,
it is discarded. This is no problem, because the other side of this tree edge already
sends a control message toward the initiator. When the initiator receives this control
message, it starts a new set of N rounds, with a higher number. This number is
attached to the messages in this run of the algorithm.

8.3 Toueg’s algorithm

Toueg’s algorithm is a decentralized algorithm that generalizes the well-known
Floyd-Warshall algorithm to a distributed setting. It is an all-pairs shortest path algo-
rithm, meaning that it computes a shortest path between any pair of processes. The
idea behind the Floyd-Warshall algorithm is to compute, for each set S of processes,
a distance function dS(p, q), denoting the length of a shortest path between p and q
with all intermediate processes in S. The following equations hold:

8.3 Toueg’s algorithm 59

dS(p, p) = 0.

d∅(p, q) = weight(pq) if p �= q and there is a channel pq.

d∅(p, q) = ∞ if p �= q and there is no channel pq.

dS∪{r}(p, q) = min{dS(p, r) + dS(r, q), dS(p, q)} for each r �∈ S.

The first equation is obvious. For the second and third equations, note that if S = ∅,
then a path between two distinct processes p and q with all intermediate processes
in S can only consist of a channel between p and q. The fourth equation expresses
that a shortest path between p and q with all intermediate processes in S ∪{r} either
visits r or does not; in the first case this path has length dS(p, r) + dS(r, q), and in
the second case it has length dS(p, q).

The Floyd-Warshall algorithm starts with S = ∅, in which case the first three
equations completely define dS . As long as S does not contain all processes, a so-
called pivot r �∈ S is selected, and dS∪{r} is computed from dS using the fourth
equation; then r is added to S. Finally, note that if S contains all processes, then dS

is the standard distance function.
Transferring this algorithm to a distributed setting gives rise to two complica-

tions. First, all processes must uniformly select the pivots in the same order. There-
fore, we make the (strong) assumption that each process knows from the start the
IDs of all processes in the network. Second, in each pivot round, the pivot r must
broadcast its routing table, because a process p may need to know dS(r, q) in order
to compute dS∪{r}(p, q).

In Toueg’s algorithm, each process p starts with Sp = ∅, and maintains val-
ues distp(q) and parentp(q) for each process q, where distp(q) is the length of
the shortest known path from p to q, and parentp(q) the process after p on this
path. Initially, distp(p) = 0 and parentp(p) =⊥, while for each q �= p, either
distp(q) = weight(pq) and parentp(q) = q if there is a channel pq, or distp(q) = ∞
and parentp(q) =⊥ otherwise.

In each successive round, the same pivot r is selected by all processes, and
added to all sets Sp. The pivot r broadcasts its values distr(q) for all processes
q. If parentp(r) =⊥ for a process p �= r in this pivot round, then distp(r) = ∞,
so distp(r) + distr(q) ≥ distp(q) for all processes q. Therefore, processes that are
not in the sink tree toward r do not need the routing table of r. Hence, this sink tree
can be used in the opposite direction to broadcast distr. To facilitate this use of r’s
sink tree, in the r-pivot round, each process p sends 〈request, r〉 to parentp(r) if it
is not ⊥, to let it pass on the values distr(q) to p. Next, p acts as follows.

– If p is not in the sink tree of r, then p immediately completes the r-pivot round.
– Suppose p is in the sink tree of r (that is, parentp(r) �=⊥ or p = r). If p �= r,

then p waits until it has received the values distr(q) from parentp(r). It forwards
these values to the neighbors that send 〈request, r〉 to p. Moreover, p checks
for each process q whether distp(r) + distr(q) < distp(q), and if so, performs
distp(q) ← distp(r) + distr(q) and parentp(q) ← parentp(r).

60 8 Routing

After completing the r-pivot round, p performs Sp ← Sp ∪ {r}. Finally, p either
proceeds to the next pivot round, if Sp does not contain all processes, or terminates
otherwise.

Example 8.3 We give a computation of Toueg’s algorithm on the following network,
with pivot order p q r s.

p

s

q

r
1

1 1

4

Initially, dist t(t) = 0 for all four processes t, dist t(u) = weight(tu) if there is a
channel tu, and all other dist values are ∞. And parent t(u) = u if t is a direct
neighbor of u, and all other parent values are ⊥.

In the p-pivot round, q and s both send 〈request, p〉 to p. So the distance values
of p are sent to q and s, but not to r, which is not yet in the sink tree of p. As a result,
q and s discover a path to each other via p, so that distq(s) and dists(q) are set to 5,
and parentq(s) and parents(q) to p.

In the q-pivot round, p, r, and s send 〈request, q〉 to q, q, and p, respectively.
So the distance values of q are sent to p, r, and s. As a result, p and r discover a path
to each other via q, so that distp(r) and distr(p) are set to 5, and parentp(r) and
parentr(p) to q.

In the r-pivot round, p, q, and s send 〈request, r〉 to q, r, and r, respectively. So
the distance values of r are sent to p, q, and s. As a result, q and s discover a shorter
path to each other via r, so that distq(s) and dists(q) are set to 2, and parentq(s)
and parents(q) to r.

In the s-pivot round, p, q, and r send 〈request, x〉 to s, r, and s, respectively. So
the distance values of s are sent to p, q, and r. As a result, p and r discover a shorter
path to each other via s, so that distp(r) and distr(p) are set to 2, and parentp(r)
and parentr(p) to s. Moreover, p and q discover a shorter path to each other via s,
so that distp(q) and distq(p) are set to 3, parentp(q) to s, and parentq(p) to r.

The worst-case message complexity of Toueg’s algorithm is O(NE): there are
N pivot rounds, and each round takes O(E) messages.

By adding messages to inform neighbors that no distance values for the current
round need to be forwarded (so negative counterparts of request messages), it can
be avoided that processes need to store distance values of pivots from past rounds
indefinitely.

A drawback of Toueg’s algorithm (next to uniform selection of pivots) is that all
distance values of a pivot are sent through the sink tree of the pivot, which gives rise
to a high bit complexity. This overhead can be reduced as follows. When a process
p in the sink tree of the pivot r receives the distance values of r, it first performs
for each process q the check whether distp(r) + distr(q) < distp(q). Now p only

8.4 Frederickson’s algorithm 61

needs to forward those values distr(q) for which this check yields a positive result
(see exercise 8.9).

8.4 Frederickson’s algorithm

We now discuss a centralized algorithm to compute a breadth-first search tree to-
ward the initiator, in an undirected (unweighted) network. We first consider a simple
version of this algorithm, in which the processes at distance n from the initiator are
discovered in round n.

Initially (after round 0), the variable dist at the initiator has value 0, distp = ∞
for each noninitiator p, and parentp =⊥ for all processes p. After each round n ≥ 0,
the breadth-first search tree has been constructed up to depth n: for each process p at
a distance k ≤ n from the initiator, distp = k, and p knows which neighbors are at
distance k − 1; and if p is a noninitiator, then it has a parent in the sink tree toward
the initiator.

We explain what happens in round n+ 1. It can be depicted as follows:

n

0

explore

explore
explore/reverse

forward/reverse

forward/reverse

n+ 1

At the start of the round, messages 〈forward, n〉 travel down the tree, from the
initiator to processes at depth n. When a process p at depth n receives this message,
it sends 〈explore, n + 1〉 to its neighbors that are not at depth n − 1. When such a
neighbor q receives this message, it acts as follows, depending on whether distq is
∞, n+ 1, or n:

• If distq = ∞, then distq ← n + 1, parentq ← p, and q sends back
〈reverse, true〉, informing p that q is a child of p.

• If distq = n+1, then q stores that p is at depth n and sends back 〈reverse, false〉,
informing p that q is not a child of p.

• If distq = n, then q interprets 〈explore, n+1〉 as a negative reply to the message
〈explore, n+ 1〉 that q sent (or will send) to p.

A process p at depth n waits until all messages 〈explore, n+1〉 have been answered
with a 〈reverse, 〉 or 〈explore, n + 1〉. Likewise, a noninitiator p at a depth < n
waits until all messages 〈forward, n〉 have been answered with a 〈reverse, 〉. In
both cases p sends 〈reverse, b〉 to its parent, where b = true only if new processes
were added to its subtree.

62 8 Routing

The initiator waits until all messages 〈forward, n〉 (or, in case of round 1,
〈explore, 1〉) have been answered with a 〈reverse, 〉. If no new processes were
added in round n + 1, then the initiator terminates, and it may inform all other pro-
cesses that the breadth-first search has terminated. Otherwise, the initiator continues
with round n+2; processes in the tree only send a forward to children that reported
new processes in round n+ 1.

The worst-case message complexity of this breadth-first search algorithm is
O(N2). Namely, there are at most N + 1 rounds, and in each round tree edges carry
at most one forward and one replying reverse, adding up to at most 2(N − 1)N
messages. And in total, channels carry one explore and one replying reverse
or explore, adding up to 2E messages. The worst-case time complexity is also
O(N2): round n is completed in at most 2n time units, for n = 1, . . . , N , and
2(1 + 2 + · · ·+N) = N(N + 1).

The idea behind Frederickson’s algorithm is that in the breadth-first search algo-
rithm described earlier, forward messages need to travel up and down the tree often,
as each round only discovers processes that are one level deeper than the ones dis-
covered in the previous round. Efficiency can be gained by exploring several levels
in one round. However, explore messages then give a performance penalty, because
they may travel through the same channel multiple times in one round. Notably, if
we abolished forward messages and used only explore messages to discover all
processes in one round, we would be back at the Chandy-Misra algorithm, which we
have seen is not efficient. Therefore, the number of levels explored in one round is
included as a parameter �. At the end, an optimal value for � will be determined.

Initially (after round 0), the variable dist at the initiator has value 0, distp = ∞
for each noninitiator p, and parentp =⊥ for all processes p. After each round n ≥ 0,
the breadth-first search tree has been constructed up to depth �n: for each process p
at a distance k ≤ �n from the initiator, distp = k, and p knows which neighbors are
at distance k− 1; and if p is a noninitiator, then it has a parent in the sink tree toward
the initiator.

At the start of round n+ 1, messages 〈forward, �n〉 travel down the tree, from
the initiator to processes at depth �n. When a process at depth �n receives this mes-
sage, it sends 〈explore, �n + 1〉 to its neighbors that are not at depth �n − 1. The
parameter in this message is (an overapproximation of) the depth of the receiving
process; this value is increased by one every time the message is forwarded. When
this parameter becomes divisible by �, the � levels for the current round have been
explored.

Compared to the simple breadth-first search algorithm discussed before, there
are two complications. First, a process q may receive a forward from a neighbor
p that is not its parent. This can happen if in the previous round p temporarily was
q’s parent, but q later selected another parent with a shorter path to the initiator, and
p sent the forward to q before being informed that q is no longer its child (see
exercise 8.13). Such a forward can simply be purged by q. Second, a process may
send multiple explores into a channel, if its distance value is improved several times
in one round. Therefore, reverses in reply to explores are supplied with a distance

8.4 Frederickson’s algorithm 63

parameter, so that a process can distinguish to which explore an incoming reverse
is a reply.

Let a process q receive a message 〈explore, k〉 from a neighbor p. We consider
two cases.

• k < distq .
Then distq ← k and parentq ← p.

∗ If k is not divisible by �, then q sends 〈explore, k + 1〉 to its neighbors except
p. Next, q waits until it has received 〈reverse, k + 1, 〉 or 〈explore, j〉 with
j ∈ {k, k+ 1, k+ 2} from all these neighbors. Then q sends 〈reverse, k, true〉
to p. Only neighbors that reply with 〈reverse, k + 1, true〉 are children of q in
the tree. (Unless q also receives a message 〈explore, k〉 from such a neighbor,
in which case the sender is not a child of q.)
If, later, q receives a message 〈explore, k′〉 with k′ < k, then q changes its
distance to k′, makes the sender its parent, sends messages 〈explore, k′ + 1〉,
and waits for replies to these messages before sending 〈reverse, k′, true〉 to its
new parent.

∗ If k is divisible by �, then q sends 〈reverse, k, true〉 to p immediately.
• k ≥ distq .
∗ If k is not divisible by �, then q does not send a reply to p. In this case q sent

〈explore, distq + 1〉 into this channel, which already serves as a negative ac-
knowledgment to the current incoming message.

∗ If k is divisible by �, then q sends 〈reverse, k, false〉 to p.

A process p at depth �n waits until all messages 〈explore, �n + 1〉 have been an-
swered with a reverse or explore. Likewise, a noninitiator p at a depth < �n waits
until all messages 〈forward, �n〉 have been answered with a reverse. In both cases
p sends 〈reverse, b〉 to its parent, where b = true only if new processes were added
to its subtree.

The initiator waits until all messages 〈forward, �n〉 (or, in case of round 1,
〈explore, 1〉) have been answered with a reverse. If no new processes were added
in round n+ 1, then the initiator terminates and may inform all other processes that
the breadth-first search has terminated. Otherwise, the initiator continues with round
n + 2; processes in the tree only send a forward to children that reported new
processes in round n+ 1.

Example 8.4 We consider one possible computation of Frederickson’s algorithm on
the following network, with p as initiator, and � = 3.

s

tr

q

up

64 8 Routing

After round 0, distp = 0, and the distance value of all other processes is ∞; nobody
has a parent.

– Round 1 is started by p, who sends 〈explore, 1〉 to q and r.
– p’s explore arrives at q: distq ← 1, parentq ← p, and q sends 〈explore, 2〉 to

r and s.
– q’s explore arrives at r: distr ← 2, parentr ← q, and r sends 〈explore, 3〉 to

p, s and t.
– p purges r’s explore.
– r’s explore arrives at s: dists ← 3, parents ← r, and s sends 〈reverse, 3, true〉

in reply.
– r’s explore arrives at t: dist t ← 3, parent t ← r, and t sends 〈reverse, 3, true〉

in reply.
– p’s explore arrives at r: distr ← 1, parentr ← p, and r sends 〈explore, 2〉 to

q, s and t.
– r purges the reverses from s and t.
– q’s explore arrives at s: dists ← 2, parents ← q, and s sends 〈explore, 3〉 to

r, t, and u.
– r’s explore arrives at t: dist t ← 2, and t sends 〈explore, 3〉 to s and u.
– s’s explore arrives at u: distu ← 3, parentu ← s, and u sends back

〈reverse, 3, true〉.
– t’s explore arrives at u, who sends back 〈reverse, 3, false〉.
– r’s and t’s explore and u’s reverse arrive at s, who sends 〈reverse, 2, true〉

to q.
– s’s explore and u’s reverse arrive at t, who sends 〈reverse, 2, true〉 to r.
– r’s explore and s’s reverse arrive at q, who sends 〈reverse, 1, true〉 to p.
– s’s explore and t’s reverse arrive at r, who sends 〈reverse, 1, true〉 to p.
– q’s and r’s reverse arrive at p, who starts round 2; no further processes are

discovered, after which the computation terminates.

The resulting spanning tree is as follows.

s

tr

q

up

The worst-case message complexity of Frederickson’s algorithm, where � levels
are explored in each round, is O(�N

� N + �E). Namely, there are at most �N
� + 1

rounds, and in each round, tree edges carry at most one forward and one replying
reverse, adding up to at most 2�N

� (N − 1) messages. And in total, channels carry
at most 2� explores and 2� replying reverses, and frond edges carry at most one
spurious forward, adding up to (fewer than) (4�+ 1)E messages.

8.5 Packet switching 65

The worst-case time complexity of Frederickson’s algorithm is O(��N
� 2): round

n is completed in at most 2�n time units, for n = 0, . . . , �N
� , and 2�(1 + 2 + · · ·+

�N
�) = ��N

� (�N
� + 1).

If we take � = � N√
E
, then both the worst-case message and time complexity

are O(N
√
E). So computing a breadth-first search tree toward each process in the

network takes O(N2
√
E) messages and time in the worst case.

8.5 Packet switching

Consider a network in which routing tables have been computed, so that all processes
know how data packets should be forwarded through the network to their destina-
tions. On their way, these packets are stored at a buffer slot of a process, until that
process is certain the packet has been stored safely in the buffer of the next process
on the packet’s route. When a packet reaches its destination it is consumed, that is,
removed from the network.

Even with cycle-free routing tables, a store-and-forward deadlock may occur,
when a group of packets are all waiting for the use of a buffer slot occupied by a
packet in the group. A controller avoids such deadlocks, by prescribing whether a
new packet can be generated at a process, or an existing packet can be forwarded
to the next process, and possibly in which buffer slot it is put. To avoid a trivial
deadlock-free controller that disallows any generation of packets, it is required that
generation of a new packet at a process with an empty buffer should always be al-
lowed.

As we said, a process can eliminate a packet from its buffer only when it is
sure the packet has arrived safely at the next process. For simplicity, we assume
synchronous communication, which basically means that a process can send a packet
only when the receiver is ready to receive it. That is, we abstract away from the
communication overhead imposed by fruitless attempts to forward a packet.

Destination and hops-so-far controllers

Consider a directed network of processes p0, . . . , pN−1, and let Ti be the sink tree
(with respect to the routing tables) with root pi for i = 0, . . . , N −1. We discuss two
controllers based on these sink trees.

In the destination controller, each process carries N buffer slots, numbered from
0 to N − 1. The ith buffer slots at the processes are used to mimic the sink tree Ti.

• When a packet with destination pi is generated at a process q, it is placed in the
ith buffer slot of q.

• If qr is an edge in Ti, then a packet in the ith buffer slot of q can be forwarded to
the ith buffer slot of r.

The destination controller is deadlock-free. This follows from the fact that, for
each i, since Ti is acyclic, packets in the ith buffer slot of any process can always
travel to their destination.

66 8 Routing

Let K be the length of a longest path in any Ti. In the hops-so-far controller,
each process carries K + 1 buffer slots, numbered from 0 to K.

• When a packet is generated at a process q, it is placed in the 0th buffer slot of q.
• If qr is an edge in some Ti, then for any j < K, a packet in the jth buffer slot of

q can be forwarded to the (j + 1)th buffer slot of r.

We argue that the hops-so-far controller is deadlock-free. It is easy to see, by
induction on j, that no packet can get stuck at a (K− j)th buffer slot of any process,
for j = 0, . . . ,K. The base case j = 0 is trivial, because a packet in a Kth buffer
slot is guaranteed to be at its destination, and so can be consumed. Now consider the
inductive case: a packet in a (K − (j + 1))th buffer slot. By induction, packets in
a (K − j)th buffer slot can be forwarded to their destination and consumed. Hence,
a packet in a (K − (j + 1))th buffer slot can either be consumed or forwarded to a
(K − j)th buffer slot and from there to its destination where it is consumed.

Acyclic orientation cover controller

An acyclic orientation of an undirected network G is a directed, acyclic network,
obtained by directing all the edges of G. Acyclic orientations G0, . . . , Gn−1 of G
form an acyclic orientation cover of a set P of paths in G if each path in P is the
concatenation of paths P0, . . . , Pn−1 in G0, . . . , Gn−1, respectively.

Example 8.5 For each undirected ring there exists a cover, consisting of three
acyclic orientations, of the collection of minimum-hop paths. For instance, in case
of a ring of size six:

G0 G1 G2

Given an undirected network G, and an acyclic orientation cover G0, . . . , Gn−1

of a set P of paths in G. In the acyclic orientation cover controller, each process has
n buffer slots, numbered from 0 to n− 1.

• A packet generated at a process q is placed in the 0th buffer slot of q.
• Let qr be an edge in Gi. For any i, a packet in the ith buffer slot of q can be

forwarded to the ith buffer slot of r. Moreover, if i < n− 1, then a packet in the
ith buffer slot of r can be forwarded to the (i+ 1)th buffer slot of q.

If all packets are routed via paths in P , then the acyclic orientation cover con-
troller is deadlock-free. Namely, consider a reachable configuration γ. Forward and

8.6 Routing on the Internet 67

consume packets until a configuration δ is reached where no forwarding or con-
sumption is possible anymore. We argue by induction on j that in δ each (n − j)th
buffer slot of any process is empty, for j = 1, . . . , n. In the base case j = 1, con-
sider a packet that is being routed via a concatenation of paths P0, . . . , Pn−1 in
G0, . . . , Gn−1. It is not hard to see that when this packet is in a kth buffer slot, it
is being routed via a P� with � ≥ k. This implies that any packet in an (n − 1)th
buffer slot is being routed via Gn−1. Since Gn−1 is acyclic, packets in an (n− 1)th
buffer slot can travel to their destination. Now consider the inductive case: a packet
in an (n − (j + 1))th buffer slot. By induction, in δ all (n − j)th buffer slots are
empty. Hence, packets in (n − (j + 1))th buffer slots can be consumed, forwarded
via Gn−(j+1) since it is acyclic, or forwarded to an (n− j)th buffer slot since these
are empty. To conclude, in δ all buffer slots are empty.

Example 8.6 For each undirected ring there exists a deadlock-free controller that
uses three buffer slots per process and allows packets to travel via minimum-hop
paths. This follows from the fact that, according to example 8.5, undirected rings
have a cover of the collection of minimum-hop paths that consists of three acyclic
orientations. So the resulting acyclic orientation cover controller requires three buffer
slots per process.

8.6 Routing on the Internet

The routing approaches discussed so far were not designed to cope with large-sized
and dynamic networks. Link-state routing is a pragmatic routing algorithm that has
been geared to the Internet.

Each process periodically (and after a network change) sends a link-state packet
to its neighbors, reporting the channels between the process and its direct neighbors,
as well as their weights (typically based on latency or bandwidth). Moreover, it at-
taches a sequence number to these link-state packets, which is increased every time
it broadcasts link-state packets to its neighbors. The link-state packets are flooded
through the network, and all processes store their content, so that they obtain a local
view of the entire network. Processes also store the sequence numbers of link-state
packets on which their local view is based, to avoid that new information is overwrit-
ten by old information. With its local view, a process can locally compute shortest
paths using a uniprocessor algorithm (mostly Dijkstra’s algorithm).

The crash failure and subsequent recovery of a process are eventually detected,
and taken into account in the link-state packets broadcast, by its neighbors. When a
process recovers from a crash, its sequence number restarts at zero, so that the link-
state packets it broadcasts after the crash might be ignored by the other processes
for a long time. Therefore, link-state packets carry a time-to-live field, defining the
moment in time after which the packet becomes stale and may be discarded. To
reduce the overhead of flooding, each time a link-state packet is forwarded, its time-
to-live field is decreased; when it becomes zero, the packet is discarded.

68 8 Routing

Link-state routing deals well with dynamicity, but does not scale up to the size
of the Internet, because it uses flooding. Therefore, the Internet is divided into so-
called autonomous systems, each of which uses link-state routing (notably by means
of the OSPF Protocol). Routing between autonomous systems is performed with the
Border Gateway Protocol, in which peer routers exchange reachability information,
meaning that a router informs its neighbors about updates in its routing table, either
because it noticed a topology change, or as a result of an update in the routing table
of one of its neighbors. Thus each router maintains an up-to-date routing table based
on autonomous system connectivity. When a router connects to the network for the
first time, other routers provide it with their entire routing table.

To control congestion in the network, in the Transmission Control Protocol
(TCP), processes maintain a congestion window for each of its channels. Packets
are acknowledged by the receiver, and the congestion window of a channel provides
an upper bound on the number of unacknowledged packets a process is allowed to
have sent into this channel. The congestion window grows linearly with each re-
ceived acknowledgment, up to some threshold. The congestion window may effec-
tively double in size during every round trip time (that is, the time between sending
a packet and receiving the corresponding acknowledgment), if all packets are being
acknowledged. The congestion window is reset to the initial size (in TCP Tahoe) or
halved (in TCP Reno) with each lost data packet.

Bibliographical notes

The Chandy-Misra algorithm originates from [17], the Merlin-Segall algorithm from
[60], Toueg’s algorithm from [78], and Frederickson’s algorithm from [34] (where
the algorithm is only sketched). The destination and hops-so-far controllers were
proposed in [59] and the acyclic orientation cover controller in [76]. The mechanisms
underlying link-state routing were put forward in [56], and a first version of link-state
routing was used in ARPANET [57]. Congestion windows can be traced back to [40].

Exercises

Exercise 8.1 Explain in detail how the Dijkstra-Scholten algorithm detects termina-
tion in the Chandy-Misra algorithm.

Exercise 8.2 Adapt the Dijkstra-Scholten algorithm so that termination is detected
in the Chandy-Misra algorithm without building two distinct sink trees (that is, no
separate sink tree is needed for detecting termination).

Exercise 8.3 Let n range over the natural numbers. Generalize example 8.1 to a
network with 2n + 1 processes and 3n weighted channels, for which the number of
messages sent by the Chandy-Misra algorithm in the worst case grows exponentially
(in n). Explain why this is the case.

Exercises 69

Exercise 8.4 Run the Merlin-Segall algorithm on the following undirected weighted
network, to compute all shortest paths toward process t. Give a computation that
takes four rounds before the correct sink tree has been computed.

t

q

r s p
4 4 2

69

7
1 2

12

Exercise 8.5 Suppose that in the Merlin-Segall algorithm a process q would update
parentq each time it updates distq . Explain why the worst-case message complexity
would become exponential.

Exercise 8.6 Run Toueg’s algorithm on the network in exercise 8.4. Take as pivot
order: p q r s t.

Exercise 8.7 Argue that Toueg’s algorithm is an all-pairs shortest path algorithm.

Exercise 8.8 Analyze the space complexity of Toueg’s algorithm.

Exercise 8.9 In Toueg’s algorithm, when a process p �= r in the sink tree of the pivot
r receives the distance values of r, let p first perform for each process q the check
whether distp(r) + distr(q) < distp(q). Explain why p needs only to forward those
values distr(q) for which this check yields a positive result.

Exercise 8.10 Suppose that channels can carry negative weights. Explain how the
output of Toueg’s algorithm can be used to detect the presence of a negative-weight
cycle of at least two channels.

Exercise 8.11 Apply Frederickson’s algorithm with � = 1 (the “simple” algorithm)
to the following undirected network, to find a breadth-first search tree rooted in p.
Do the same with � = 2.

p q

rs

70 8 Routing

Exercise 8.12 In Frederickson’s algorithm, consider a process at k hops from the
initiator, with k �= �n for any n. Argue that this process is guaranteed to receive a
message 〈reverse, k+ 1, 〉 or 〈explore, j〉 with j ∈ {k, k+ 1, k+ 2} from all its
neighbors.

Exercise 8.13 Give a computation of Frederickson’s algorithm on an undirected ring
of size three and with � = 2, to show that a forward can be sent to a process that is
not a child of the sender.

Exercise 8.14 Argue that Frederickson’s algorithm establishes a breadth-first search
tree toward the initiator.

Exercise 8.15 Analyze the message and time complexity of Frederickson’s breadth-
first search algorithm, taking into account the network diameter D.

Exercise 8.16 Develop a distributed version of Dijkstra’s celebrated single-source
shortest path algorithm for undirected weighted networks. Discuss the worst-case
message and time complexity of your algorithm.

Exercise 8.17 [76] Show that there does not exist a deadlock-free controller that
uses only one buffer slot per process and allows each process to send packets to at
least one other process.

Exercise 8.18 [76] Show that the destination controller is not deadlock-free if packet
routing is as follows:

r2r1

p1

p2

q

In this picture, packets from p1 to q are routed via the path p1 r1 p2 · · · q, and packets
from p2 to q are routed via the path p2 r2 p1 · · · q.

Exercise 8.19 Argue that the acyclic orientation cover of a ring of size six in exam-
ple 8.5 covers all shortest paths in this ring.

Exercise 8.20 Give an acyclic orientation cover G0, G1 of a set of paths in the fol-
lowing undirected network that contains for each pair of processes p, q a minimum-
hop path from p to q.

Exercises 71

Describe in detail how the buffer slots are linked in the corresponding acyclic orien-
tation cover controller.

Exercise 8.21 Given the undirected cube, prove that there is an acyclic orientation
cover G0, G1 such that between every two processes in the cube there is a minimum-
hop path that is the concatenation of paths in G0 and G1.

Exercise 8.22 Show that for any acyclic undirected network there exists a deadlock-
free controller that uses only two buffer slots at each process.

Exercise 8.23 Give an example to show that a cyclic orientation cover controller (in
which the orientations Gi are allowed to contain cycles) is not always deadlock-free.

Exercise 8.24 Why does the link-state algorithm become less efficient if processes
broadcast their entire routing table instead of only their channels and weights?

Exercise 8.25 Argue why a congestion window may effectively double in size dur-
ing every round trip time.

9

Election

In an election algorithm, the processes in the network elect one process among them
as their leader. The aim is usually to let the leader act as the organizer of some
distributed task, as the root of a spanning tree of the network, or as the initiator of a
centralized algorithm. Each computation must start in a configuration in which the
processes are unaware which process will serve as the leader and must terminate in
a configuration where exactly one process is the leader.

Election algorithms are decentralized: the initiators can be any nonempty set of
processes. We require that all processes have the same local algorithm. This disallows
the trivial solution where exactly one process has the algorithm “I am the leader.”
Process IDs are unique and from a totally ordered set. In chapter 10 we will see that
unique IDs are essential to construct election algorithms that always terminate.

9.1 Election in rings

We first consider three election algorithms for ring topologies. In each of these algo-
rithms, the initiators determine among themselves which one has the highest ID. This
initiator becomes the leader. Initially, the initiators are active, while all noninitiators
are passive. Passive processes are out of the race to become the leader and simply
pass on messages.

Chang-Roberts algorithm

The Chang-Roberts algorithm targets a directed ring. Since networks are assumed
to be strongly connected, a directed ring is oriented either in a clockwise or in a
counterclockwise fashion.

Initially, the initiators send a message to the next process in the ring, tagged with
their ID. When an active process p receives a message tagged with q, there are three
cases.

• q < p: then p purges the message.
• q > p: then p becomes passive, and passes on the message.

74 9 Election

• q = p: then p becomes the leader.

The idea behind the Chang-Roberts algorithm is that only the message with the
highest ID will complete the round trip, because every other message is stopped
at the latest when it arrives at the initiator with the highest ID (by the first case).
Moreover, initiators that do not have the highest ID are made passive at the latest
when they receive the message with the highest ID (by the second case). When an
initiator receives back its own message, it knows it is the leader (by the third case).

Example 9.1 In the ring below, all processes are initiators. If the ring is directed
counterclockwise, then it takes 1

2N(N + 1) messages to elect process N − 1 as the
leader. Namely, each message is stopped at process N − 1, so the message from
process i travels i+1 hops for i = 0, . . . , N−1; and 1+2+ · · ·+N = 1

2N(N+1).

· · ·

1

N−2

N−1

0

2

If the ring is directed clockwise, then it takes only 2N − 1 messages to elect
process N − 1 as the leader. Namely, each message is stopped after one hop, except
for the message from process N − 1, which travels N hops.

The preceding example shows that the worst-case message complexity of the
Chang-Roberts algorithm is O(N2). It can be shown, however, that the average-case
message complexity is O(N logN).

Franklin’s algorithm

Franklin’s algorithm, which requires an undirected ring, improves upon the worst-
case message complexity of the Chang-Roberts algorithm. In an election round, each
active process p compares its own ID with the IDs of its nearest active neighbors on
both sides. If p’s ID is the largest of the three IDs, then p proceeds to the next election
round. If one of the other IDs is larger than p’s ID, then p becomes passive. And if p
receives its own ID from either side, then it becomes the leader, because there are no
other active processes left in the ring.

To be more precise, at the start of an election round, each active process sends its
ID to its neighbors on either side. When an active process p has received messages
tagged with q and r from either side, there are three cases:

9.1 Election in rings 75

• max{q, r} < p: then p enters another election round by sending its ID in both
directions again.

• max{q, r} > p: then p becomes passive.
• max{q, r} = p: then p becomes the leader.

Since a message can overtake another message from the previous round, pro-
cesses need to keep track of the parity of their current round number and must attach
this parity to the message containing their ID; see the pseudocode of the Dolev-
Klawe-Rodeh algorithm in the appendix.

Example 9.2 On the undirected version of the ring in example 9.1, Franklin’s algo-
rithm terminates in two rounds. In the first round, only process N−1 remains active.
In the second round, process N − 1 finds that it is the leader.

Example 9.3 We run Franklin’s algorithm on the following ring, in which all pro-
cesses are initiators.

0 2

35

4

1

– Processes 3, 4, and 5 progress to the second election round, because their IDs are
larger than their (active) neighbors. Processes 0, 1, and 2 become passive in the
first round.

– Only process 5 progresses to the third round, because in the second round it finds
that its ID is larger than its nearest active neighbors 3 and 4. Process 3 and 4
become passive in the second round, because their nearest active neighbor 5 has
a larger ID.

– Finally, in the third round, process 5 finds that it is the leader, because the two
messages it sends in either direction complete the round trip.

The worst-case message complexity of Franklin’s algorithm is O(N logN).
Namely, in each round with two or more active processes, at least half of the ac-
tive processes become passive, because for each pair of nearest active neighbors at
least one becomes passive. In the final round, the remaining active process becomes
the leader. So there are at most
log2 N� + 1 rounds. And each round takes 2N
messages (two messages per channel).

Dolev-Klawe-Rodeh algorithm

The Dolev-Klawe-Rodeh algorithm transposes the idea behind Franklin’s algorithm
to a directed ring. In that setting, messages cannot travel in both directions, so that

76 9 Election

an active process cannot easily compare its own ID p with the IDs q and r of its
nearest active neighbors. This is resolved by performing this comparison not at p,
but at its next (in the direction of the ring) active neighbor r. That is, the IDs p and q
are collected at r. If p is larger than q and r, then r remains active, and progresses to
the next election round, in which it assumes the ID p. If p is smaller than q or r, then
r becomes passive. And if p equals q and r, then r becomes the leader. If we really
want the initiator with the largest ID to become the leader, then in the last case, r
could send a special leader message tagged with its last ID around the ring, to inform
the initiator that started the election with this ID that it is the leader.

To be more precise, at the start of an election round, each active process sends
its ID to its next neighbor, with a 0 attached. When an active process r receives this
message 〈id, p, 0〉, it stores the ID p and passes on the message with a 1 attached.
And when r receives a message 〈id, q, 1〉, it stores the ID q. Now there are three
cases:

• max{q, r} < p: then r enters another round with the new ID p by sending
〈id, p, 0〉.

• max{q, r} > p: then r becomes passive.
• max{q, r} = p: then r becomes the leader (or sends a special leader message

tagged with r).

Since a message can overtake another message from the previous round, pro-
cesses need to keep track of the parity of their current round number and must attach
this parity to the message containing their ID; see the pseudocode in the appendix.

Example 9.4 Just as Franklin’s algorithm, the Dolev-Klawe-Rodeh algorithm takes
just two rounds to terminate on the undirected version of the ring in example 9.1.

This example shows that an active process r that collects IDs p and q in an elec-
tion round, must really act as if it is the middle process p. If r proceeded to the next
round if its own ID were the largest, then it is easy to see that the message complex-
ity of the Dolev-Klawe-Rodeh algorithm on the ring in example 9.1 would become
O(N2).

Example 9.5 We run the Dolev-Klawe-Rodeh algorithm on the ring in example 9.3,
oriented in the clockwise direction.

– Processes 0, 1, and 2 progress to the second election round, because they act as
processes 5, 3, and 4, respectively. For instance, process 0 collects the IDs 5 (with
a 0 attached) and 1 (with a 1 attached); concludes that 5 is the largest ID of 0, 5,
and 1; and progresses to the second round with the ID 5. Likewise for processes
1 and 2. Processes 3, 4, and 5 become passive in the first round, because they act
as processes 2, 0, and 1, respectively.

– Only process 2 (which assumed the ID 4 for the second round) progresses to the
third round, because in the second round it collects the IDs 5 (with a 0 attached)
and 3 (with a 1 attached), and concludes that 5 is the largest ID of 4, 5, and 3.
Process 0 (which assumed the ID 5) and 1 (which assumed the ID 3) become
passive in the second round.

9.2 Tree election algorithm 77

– Finally, in the third round, process 2 (which assumed the ID 5 for the third round)
finds that it is the leader, because it receives back its own ID, first with a 0 at-
tached and next with a 1 attached. Alternatively, process 2 can announce to the
other processes that 5 is the largest ID in the ring, after which the process that
carried the ID 5 at the start of the election becomes the leader.

The worst-case message complexity of the Dolev-Klawe-Rodeh algorithm is the
same as of Franklin’s algorithm: O(N logN). Namely, there are at most
log2 N�+1
rounds, and each round takes 2N messages.

It can be shown that Ω(N logN) is a lower bound on the average-case message
complexity of any election algorithm for rings.

9.2 Tree election algorithm

The tree algorithm from section 4.2 can be used as the basis for an election algorithm
in acyclic undirected networks. The idea is that each process p collects IDs from its
children, computes the maximum of these IDs and its own ID, and passes on this
maximum to its parent. Later, p receives the overall maximum of the IDs in the
network from its parent, which p passes on to its children.

In election algorithms the initiators can be any nonempty set of processes, while
the tree algorithm starts from all the leaves in the network. Therefore, the tree elec-
tion algorithm is booted by a wake-up phase, driven by the initiators, which send a
wake-up message to all their neighbors. These wake-up messages are then flooded
through the network; that is, noninitiators send a wake-up message to their neighbors
after they have received a first wake-up message. A process wakes up when it has
received wake-up messages from all its neighbors.

The local algorithm at an awake process p is as follows:

• p waits until it has received IDs from all its neighbors except one, which becomes
its parent.

• p computes the largest ID maxp among the received IDs and its own ID.
• p sends a parent message to its parent, tagged with maxp.
• If p receives a parent message from its parent, tagged with q, then it computes

max′p, being the maximum of maxp and q.
• Next, p sends an information message to all neighbors except its parent, tagged

with max′p.

Each node that receives the information message, tagged with the largest ID in the
network, forwards it to its children. Thus the information message is forwarded
through the entire network, and eventually the process with the largest ID becomes
the leader.

The only tricky part of the algorithm is that if p receives a parent message, tagged
with an ID q, from its parent r, then p must compare the ID q with the maximum
maxp it computed before. The reason is that p and r computed the maximum among
all IDs in disjoint parts of the network, which together cover the entire network.

78 9 Election

Example 9.6 We consider one possible computation of the tree election algorithm
on the network below. The wake-up phase is omitted. Messages that are depicted
with a solid arrow head are toward a parent.

6

4

3

1

5

2

6

4

3

1

5

2

4 2

6 5 6 5

4

In the first picture, the leaves 2, 4, 5, and 6 have selected their only neighbor as their
parent and sent their ID to their parent. In the second picture, process 1 has received
the messages from 2 and 4, calculated the maximum 4, made its remaining neighbor
3 its parent, and sent the maximum to its parent.

6

4

3

1

5

2

6

4

3

1

5

2

5

6

6

6

In the third picture, process 3 has received the messages from 1 and 6, calculated the
maximum 6, made its remaining neighbor 5 its parent, and sent the maximum to its
parent. In the fourth picture, processes 3 and 5 have received each other’s message,
and calculated the maximum 6, concluding that 6 must become the leader; process 3
has moreover sent 6 to its two children.

6

4

3

1

5

2

6

leader

6

In the fifth picture, processes 1 and 6 have received the message from 3; process 6
has become the leader, while process 1 has sent 6 to its two children. When these
two messages have arrived, the algorithm has terminated.

Just as the tree algorithm, the tree election algorithm takes 2N−2 messages: two
messages per channel. And the wake-up phase also takes 2N − 2 messages.

9.3 Echo algorithm with extinction 79

9.3 Echo algorithm with extinction

We now discuss an election algorithm for undirected networks that works for any
topology. The idea is to let each initiator start a run of the echo algorithm from
section 4.3, tagged with its ID. Only the wave started by the initiator with the largest
ID completes, after which this initiator becomes the leader. Noninitiators join the
first wave that hits them.

At any time, each process takes part in at most one wave. Suppose a process p
that is participating in a wave tagged with q is hit by a wave tagged with r.

• If q < r, then p makes the sender its parent, changes to the wave tagged with r
(it abandons all the wave messages it received earlier), and treats the incoming
message accordingly.

• If q > r, then p continues with the wave tagged with q (it purges the incoming
message).

• If q = r, then p treats the incoming message according to the echo algorithm of
the wave tagged with q.

If the wave tagged with p completes, by executing a decide event at p, then p becomes
the leader.

Waves of initiators that do not have the largest ID among all initiators are guaran-
teed not to complete (that is, are extinguished), because the initiator with the largest
ID will refuse to take part in these waves. Conversely, the wave of the initiator with
the largest ID is guaranteed to complete, because each process will eventually switch
to this wave.

Example 9.7 We consider a computation of the echo algorithm with extinction on
an undirected ring of three processes 0, 1, 2, which are all initiators.

– The three processes all start a wave, and send a wave message to their two neigh-
bors, tagged with their ID.

– The wave messages from 0, tagged with 0, are purged by 1 and 2.
– 0 receives the wave message from 1, tagged with 1. As a result, 0 changes to 1’s

wave, makes 1 its parent, and sends a wave message to 2, tagged with 1.
– The wave messages tagged with 1 from 0 and 1 are purged by 2.
– 0 and 1 receive the wave message from 2, tagged with 2. As a result, they change

to 2’s wave, make 2 their parent, and send a wave message to each other, tagged
with 2.

– 0 and 1 receive each other’s wave message, tagged with 2. Next, they send a wave
message tagged with 2 to their parent 2.

– 2 receives the wave messages from 0 and 1, tagged with 2. As a result, 2’s wave
decides, and 2 becomes the leader.

The worst-case message complexity of this echo algorithm with extinction is
O(NE): there are at most N waves, and each wave uses at most 2E messages.

80 9 Election

9.4 Minimum spanning trees

We now turn our attention to a topic that at first sight has little to do with election:
minimum spanning trees. However, the distributed algorithm for constructing a min-
imum spanning tree that is discussed in this section will turn out to yield an efficient
election algorithm.

Given is an undirected network, in which the channels carry positive weights. A
minimum spanning tree is a spanning tree of the network for which the sum of the
weights of its channels is minimal. They can be employed, for example, to minimize
the cost of broadcasting messages through the network.

For convenience we assume that different channels in the network always have
different weights; this guarantees that the minimum spanning tree is unique. Alter-
natively, we could allow different channels to have the same weight, and impose a
total order on channels with the same weight, using the IDs of the end points of a
channel.

The Gallager-Humblet-Spira algorithm is a distributed version of Kruskal’s fa-
mous algorithm for computing minimum spanning trees in a uniprocessor setting. We
first briefly discuss Kruskal’s algorithm, which uses the notion of a fragment, being
any connected subgraph of the minimum spanning tree. A channel in the network is
said to be an outgoing edge for a fragment if exactly one of the processes connected
by the channel is in the fragment. Kruskal’s algorithm is based on the observation
that the lowest-weight outgoing edge c of a fragment F is always in the minimum
spanning tree. Otherwise, the minimum spanning tree extended with c would contain
a cycle, which would include c and another outgoing edge d of F . Replacing d by
c in the minimum spanning tree would give another spanning tree of the network,
and the sum of the weights of its channels would be smaller than for the minimum
spanning tree. This is a contradiction.

In Kruskal’s algorithm, initially each process in the network forms a separate
fragment. In each step, two different (disjoint) fragments are joined into one fragment
via a channel between these fragments that is the lowest-weight outgoing edge for
at least one of the two fragments. The algorithm terminates when only one fragment
remains.

In a distributed setting, it becomes complicated for a process to decide whether
its channels are outgoing edges or not. For each of its channels, it has to communicate
with the process at the other side to find out whether it is in the same fragment. And if
one of its channels turns out to be an outgoing edge, the process has to work together
with the other processes in its fragment to determine whether it is the least-weight
outgoing edge for the fragment. And when finally the least-weight outgoing edge for
the fragment has been detected, the fragment at the other side of the channel has to
be asked to join together, so that the two fragments become one.

In the Gallager-Humblet-Spira algorithm, each fragment carries a name, which
is a nonnegative real number, and a level, which is a natural number. Processes keep
track of the name and level of their fragment. Each fragment has a unique name,
except initially, when each process starts as a fragment with name and level 0. The
level of a fragment is the maximum number of joins any process in the fragment has

9.4 Minimum spanning trees 81

experienced. When two fragments join, there are two scenarios. If the two joining
fragments have different levels, the one with the lowest level copies the name and
level of the other fragment (in which case the processes in the other fragment do not
experience the join). If they have the same level, the new name of the joint fragment
is the weight of the so-called core edge via which they are joined, and the level is
increased by one.

The core edge of a fragment, that is, the last channel via which two subfragments
were joined at the same level, plays a key role in the algorithm. It is the central
computing unit of the fragment, to which the processes in the fragment report the
lowest-weight outgoing edge they are aware of, and from where the join via the
lowest-weight outgoing edge of the fragment is initiated. Each process has a parent,
toward the core edge of its fragment (except initially, when fragments consist of a
single process). The end points of a core edge are called the core nodes; they have
each other as parent.

Processes are in one of the following three states:

• sleep: this is a special state for noninitiators, so that this algorithm for computing
minimum spanning trees can be easily turned in an election algorithm, where we
must allow for any nonempty set of initiators. A process that is asleep wakes up
as soon as it receives any message.

• find: the process is looking for its lowest-weight outgoing edge, and/or waiting
for its children to report the lowest-weight outgoing edge they are aware of.

• found: the process has reported the lowest-weight outgoing edge it is aware of to
its parent, and is waiting either for an instruction from the core edge that a join
should be performed via that channel, or for a message informing that a join has
been completed elsewhere in the fragment.

Moreover, processes maintain a status for each of their channels:

• basic edge: it is undecided whether the channel is part of the minimum spanning
tree.

• branch edge: the channel is part of the minimum spanning tree.
• rejected: the channel is not part of the minimum spanning tree.

Each initiator, and each noninitiator after it has woken up, sets its lowest-weight
channel to branch , its other channels to basic, and its state to found . It sends the
message 〈connect, 0〉 into the branch edge, to inform the fragment at the other side
that it wants to join via this channel, and that its fragment has level 0.

Let two fragments, one with name fn and level �, and the other with name fn ′ and
level �′, be joined via channel pq, where p is in the first and q in the second fragment.
Let � ≤ �′. As explained before, there are two possible scenarios.

• If � < �′, then in the past p sent 〈connect, �〉 to q, and now q sends the message
〈initiate, fn ′, �′, find

found 〉 to p. We write find
found to express that this parameter can

be either find or found , depending on the state q is in.
• If � = �′, then in the past p and q sent 〈connect, �〉 to each other, and now they

send 〈initiate,weight of pq, �+ 1,find〉 to each other.

82 9 Election

At the reception of a message 〈initiate, fn, �, find
found 〉, a process stores fn and � as

the name and level of its fragment, assumes the state find or found depending on the
last parameter in the message, and adopts the sender as its parent. It passes on the
message through its other branch edges.

In the first scenario, q is in the fragment with the higher level, so that its initiate
message imposes the name and level of its fragment onto p. Moreover, p makes q its
parent, toward the core edge of q’s fragment. By forwarding the initiate message
through its other branch edges, p ensures that all other processes in its fragment
update the name and level of their fragment, and select a new parent toward the core
edge of q’s fragment.

In the second scenario, both fragments have the same level, so that the joint
fragment gets a new name, level and core edge. The new name is the weight of the
channel pq, the new level is the old level plus one, and the new core edge is pq. Since
all processes in both fragments must be informed, p and q send an initiate message
with the new name and level to each other. As this message is forwarded through the
branch edges, the processes in the joint fragment select a new parent toward the core
edge pq. The parameter find in the initiate message makes sure that these processes
moreover start looking for the lowest-weight outgoing edge of the joint fragment.

When a process p receives a message 〈initiate, fn, �,find〉, it starts checking in
increasing order of weight whether one of its basic edges pq is outgoing, by sending
〈test, fn, �〉 to q and waiting for an answer from q. A basic edge pq that was found
to be outgoing before has to be tested again, as in the meantime the fragments of p
and q may have joined. At reception of the test message, q acts as follows.

• If � is greater than the level of q’s fragment, then q postpones processing the
incoming test message, until the level of q’s fragment has reached or surpassed
�. The reason for this postponement is that p and q might actually be in the same
fragment, in which case the message 〈initiate, fn, �,find〉 is on its way to q.

• If � is not greater than the level of q’s fragment, then q checks whether the name
of q’s fragment is fn . If so, then q replies with a reject message to p (except if
q is awaiting a reply to a test message to p, because then p and q can interpret
each other’s message 〈test, fn, �〉 as a reject). As a result, p and q will both set
the status of the channel pq to rejected . If not, then q replies with an accept
message to p.

When a basic edge is accepted or there are no basic edges left, p stops the search for
its lowest-weight outgoing basic edge.

Moreover, p waits for report messages through its branch edges, except the
one to its parent. Then p sets its state to found , and computes the minimum λp of
these reports and the weight of its lowest-weight outgoing basic edge (or ∞, if no
such edge was found). If λp < ∞, then p stores the branch edge through which it
received λp, or its outgoing basic edge of weight λp. Finally, p sends 〈report, λp〉
to its parent.

Only the core nodes receive a report message from their parent. If the mini-
mum reported value is ∞, then the core nodes terminate, because then the minimum
spanning tree has been computed. If the minimum reported value μ is smaller than

9.4 Minimum spanning trees 83

∞, then the core node that received μ first sends a changeroot message via branch
edges toward the process p that originally reported its channel pq with weight μ as its
lowest-weight outgoing basic edge. Here it is used that processes stored their branch
edge that reported μ. From then on, the core edge becomes a regular (tree) edge.
When p receives the changeroot message, it sets the channel pq to branch , and
sends 〈connect, �〉 into it, where � is the level of p’s fragment.

Let a process q receive a message 〈connect, �〉 from a neighbor p. We note that
the level of q’s fragment is at least �: either � = 0, or q earlier sent accept to p,
which it could only do if its fragment had a level of at least �, and fragment levels
never decrease over time. Now q acts as follows:

• As long as q’s fragment has level � and qp is not a branch edge, q postpones
processing the connect message from p. The reason for this postponement is
that q’s fragment might be in the process of joining a fragment with a level ≥
�, in which case p’s fragment should subsume the name and level of that joint
fragment, instead of joining q’s fragment at an equal level.

• When the level �′ of q’s fragment is or becomes greater than �, q sets the channel
qp to branch and sends 〈initiate, fn ′, �′, find

found 〉 to p, where fn ′ is the name of
q’s fragment, and find or found depends on the state of q.

• When q’s fragment has level � and qp is or becomes a branch edge (in which case
q sent 〈connect, �〉 to p), q sends 〈initiate,weight of qp, �+1,find〉 to p (and
vice versa).

In the last case, pq becomes the core edge of the joint fragment.
This completes the description of the Gallager-Humblet-Spira algorithm; we are

back at the situation where two fragments are joined at a different or the same level,
by means of one or two initiate messages, respectively, which was explained be-
fore.

Example 9.8 We consider one possible computation of the Gallager-Humblet-Spira
algorithm on the following network, in which all processes are initiators.

p q

rs

t
5

3

11
9 7

15

– p and q send 〈connect, 0〉 to each other, after which they both make the channel
pq a branch edge. Since these fragments join at the same level 0, p and q send
〈initiate, 5, 1,find〉 to each other. Next, p and q send 〈test, 5, 1〉 to s and r,
respectively.

84 9 Election

– t sends 〈connect, 0〉 to q, after which it makes the channel tq a branch edge.
Since the fragment of q is at level 1, q replies with 〈initiate, 5, 1,find〉. Then t
sends 〈report,∞〉 to its new parent q, as t has no channels except tq.

– r and s send 〈connect, 0〉 to each other, after which they both make the channel
rs a branch edge. Since these fragments join at the same level 0, r and s send
〈initiate, 3, 1,find〉 to each other. Next, r and s send 〈test, 3, 1〉 to q and p,
respectively.

– Since the fragments of r and s are at the same level as the fragments of q and
p, but have a different name, r and s reply to the test message from q and p,
respectively, with an accept message. As a result, p sends 〈report, 9〉 to its
parent q, while q sends 〈report, 7〉 to its parent p. Because 7 is smaller than 9,
q sends 〈connect, 1〉 to r.

– Since the fragments of p and q are at the same level as the fragments of s and
r, but have a different name, p and q can reply to the test message from s and
r, respectively, with an accept message. As a result, r sends 〈report, 7〉 to its
parent s, while s sends 〈report, 9〉 to its parent r. As 7 is smaller than 9, r sends
〈connect, 1〉 to q.

– By the crossing 〈connect, 1〉 messages between q and r, the channel between
these processes becomes a branch edge as well as the core edge of the new frag-
ment, which has level 2. Messages 〈initiate, 7, 2,find〉 are forwarded through
the branch edges. The channels pr and ps are tested (in this order) from either
side, both times leading to a reject. Finally, all processes report ∞, and the algo-
rithm terminates.

So the minimum spanning tree consists of the channels pq, qr, qt, and rs.

We argue that the Gallager-Humblet-Spira algorithm is deadlock-free. There are
two potential causes for deadlock, because a process q may postpone an incoming
message. The first case is if q receives a message 〈test, fn, �〉 while � is greater than
the level of q’s fragment. This postponement does not lead to a deadlock, because
there is always a fragment of minimal level, and test messages originating from
this fragment will be answered promptly. The second case is if q receives a message
〈connect, �〉 while the level of q’s fragment equals � and qp is not a branch edge.
This postponement also does not lead to a deadlock, because different edges have
different weights, so there cannot be a cycle of fragments waiting for a reply to a
postponed connect message.

The worst-case message complexity of the Gallager-Humblet-Spira algorithm is
O(E +N logN). The summand E is the accumulation of all messages for rejecting
channels: each channel outside the minimum spanning tree is rejected by a test-
reject or test-test pair. This adds up to 2(E − (N − 1)) messages in total. Fur-
thermore, each process experiences at most
log2 N� joins, because each time this
happens the level at the process increases, and a fragment at a level � contains at least
2� processes (see exercise 9.6). Each time a process experiences a join, it receives
an initiate message, and may send the following four messages: one test that trig-
gers an accept message, a report, and a changeroot or connect. Including the
accept, these are five messages every time a process experiences a join, adding up

Exercises 85

to at most 5N
log2 N� messages in total. Thus we have covered all messages in the
algorithm.

Finally, as promised at the start of this section, we return to election. By two
extra messages at the very end of the Gallager-Humblet-Spira algorithm, the core
node with the largest ID can become the leader. This yields an election algorithm for
undirected networks.

The lower bound of Ω(N logN) for rings mentioned before implies a lower
bound of Ω(E +N logN) on the average-case message complexity of any election
algorithm for general networks. So the message complexity of the Gallager-Humblet-
Spira algorithm is optimal.

Bibliographical notes

The Chang-Roberts algorithm originates from [19], and Franklin’s algorithm from
[33]. The Dolev-Klawe-Rodeh algorithm was proposed independently in [27] and
in [63]. The lower bound of Ω(N logN) on the average-case message complexity
of election algorithms for rings was proved in [61]. The Gallager-Humblet-Spira
algorithm stems from [35].

Exercises

Exercise 9.1 [76] Consider the Chang-Roberts algorithm on a directed ring of size
N , under the assumption that every process is an initiator. For which distribution
of IDs over the ring is the message complexity minimal, respectively maximal, and
exactly how many messages are exchanged in these cases? Argue why no distribution
of IDs gives rise to fewer or more messages.

Exercise 9.2 [76] Give an initial configuration of a directed ring of size N , with
every process an initiator, for which the Dolev-Klawe-Rodeh algorithm requires
only two rounds. Also give an initial configuration for which the algorithm requires

logN�+ 1 rounds.

Exercise 9.3 Give a computation of the tree election algorithm on the network from
example 9.6 in which eventually the processes 1 and 4 have each other as parent.

Exercise 9.4 Consider the tree election algorithm.

(a) [76] Show that for undirected networks with a diameter D > 1, the time com-
plexity of this algorithm (including the wake-up phase) is at most 2D.

(b) For D = 2, give an example where this algorithm takes four time units to termi-
nate.

(c) Give an example to show that if D = 1, this algorithm may take three time units
to terminate.

86 9 Election

Exercise 9.5 Perform the Gallager-Humblet-Spira algorithm on the following undi-
rected network:

1

2

q

r

p

3

Give one possible computation to determine the minimum spanning tree.

Exercise 9.6 Argue that in the Gallager-Humblet-Spira algorithm, any fragment at
a level � always contains at least 2� processes.

Exercise 9.7 Argue that the Gallager-Humblet-Spira algorithm correctly computes
the minimum spanning tree.

Exercise 9.8 Suppose, at some point in the Gallager-Humblet-Spira algorithm, a
process reported a lowest-weight outgoing basic edge, and next receives a message
〈initiate, fn, �,find〉. Explain by means of a scenario why it must test again whether
this basic edge is outgoing.

Exercise 9.9 Suppose that, at some point in the Gallager-Humblet-Spira algorithm,
a process p receives a message 〈test, fn, �〉 through channel pq, where p’s fragment
has a different name than fn and at least level �. Explain why p can send an accept
message to q, without fear that p and q are in the same fragment.

Exercise 9.10 Consider the following scenario for the Gallager-Humblet-Spira algo-
rithm. In a fragment F with name fn and level �, the core nodes have just determined
the lowest-weight outgoing edge of F . Concurrently, another fragment with name
fn ′ and level �′ < � connects to F via a channel qp. Why can we be sure that F has
an outgoing edge with a lower weight than pq?

Exercise 9.11 Give an example to show that the Gallager-Humblet-Spira algorithm
could get into a deadlock if different channels were allowed to have the same weight.
Argue that the deadlock in your example is avoided if a total order is imposed on
channels with the same weight.

10

Anonymous Networks

Sometimes the processes in a network are anonymous, meaning that they may lack
a unique ID. Typically, this is the case if there are no unique hardware IDs (for
example, LEGO Mindstorms). Furthermore, when processes do have unique IDs but
they cannot reveal their ID to other processes, this is similar to having no unique
process IDs at all. For instance, processes may not want to reveal their ID for security
concerns, or transmitting/storing IDs may be deemed too expensive, as is the case for
the IEEE 1394 serial bus discussed in section 10.7.

In this section we assume that processes (and channels) do not have a unique ID.

10.1 Impossibility of election in anonymous rings

We show that there does not exist an election algorithm that always terminates on
any anonymous network. The idea is that if the initial configuration is symmetric
(typically, a ring in which all processes are in the same state and all channels are
empty), then there is always an infinite execution that cannot escape this symmetry.
Apparently, unique process IDs are a crucial ingredient for the election algorithms in
chapter 9 to break symmetry.

Note that vice versa, if one leader has been elected, all processes can be given a
unique ID using a traversal algorithm (see section 4.1) initiated by the leader.

We recall from chapter 9 that election algorithms are decentralized. The initiators
can be any nonempty set of processes, and all processes must have the same local
algorithm.

Theorem 10.1 No election algorithm for anonymous rings always terminates.

Proof. Suppose we have an election algorithm for (directed or undirected) anony-
mous rings. We run it on an anonymous ring of size N > 1.

A configuration of the algorithm on the ring is symmetric if all processes are in
the same state and all channels carry the same messages. We make three observa-
tions:

88 10 Anonymous Networks

• There is a symmetric initial configuration: All processes can be provided with
the same initial state, and initially all channels are empty.

• In a symmetric configuration there is not one leader, because all processes are in
the same state.

• If γ0 is a symmetric configuration and γ0 → γ1, then there is a sequence of tran-
sitions γ1 → γ2 → · · · → γN where γN is symmetric. Namely, the transition
γ0 → γ1 is caused by an internal, send, or receive event at some process. Since in
γ0 all processes are in the same state and all channels carry the same messages,
all other processes in the ring can also perform this event, and the resulting con-
figuration γN is symmetric.

These observations together imply that the election algorithm exhibits an infinite
execution, which infinitely often visits a symmetric configuration.

We can even construct an infinite execution that is fair; that is, if an event can hap-
pen in infinitely many configurations in the execution, then this event is performed
infinitely often during the execution. Namely, given the symmetric configuration γ0
in the third case above, it does not matter which event available in γ0 is used for the
transition γ0 → γ1; we can always build the transition sequence to the symmetric
configuration γN . This implies that we can make sure no event is ignored infinitely
often in the infinite execution. ��

10.2 Probabilistic algorithms

In view of the impossibility result in the previous section, we now turn to proba-
bilistic algorithms, in which a process may, for example, flip a coin and perform an
event based on the outcome of this coin flip. That is, events can happen with a certain
probability.

For probabilistic algorithms, we can calculate the probability that an execution
from some set of possible executions will occur. Although in the previous section
we proved that election algorithms for anonymous rings inevitably contain infinite
executions, in the next section we will see that there exists such an algorithm in
which the probability that an infinite execution occurs is zero.

Probabilistic algorithms for which all executions terminate in a correct configu-
ration are in general not so interesting (except sometimes from a complexity point of
view). Any deterministic version of such an algorithm (for example, let the coin flip
always yield heads) produces a correct nonprobabilistic algorithm. We therefore con-
sider two classes of probabilistic algorithms: ones that always terminate but that may
terminate incorrectly, and ones that may not terminate but if they do the outcome is
always correct.

A probabilistic algorithm is Las Vegas if:

• the probability that it terminates is greater than zero, and
• all terminal configurations are correct.

It is Monte Carlo if:

10.3 Itai-Rodeh election algorithm for rings 89

• it always terminates, and
• the probability that a terminal configuration is correct is greater than zero.

Note that if the probability that a Las Vegas algorithm terminates is one, there
may still be infinite executions. But in this case the probability mass of all infinite
executions together is zero. For example, consider an algorithm which consists of
flipping a fair coin as long as the result is heads, and which terminates as soon as the
result of a coin flip is tails. The algorithm has one infinite execution, in which every
time the outcome of the coin flip is heads. But the probability that this execution
occurs is zero.

10.3 Itai-Rodeh election algorithm for rings

The Itai-Rodeh election algorithm targets anonymous directed rings. Although in
section 10.1 it was shown that there is no terminating election algorithm for this
setting, the Itai-Rodeh election algorithm will achieve the next best thing: a Las
Vegas algorithm that terminates with probability one.

We adapt the Chang-Roberts algorithm from section 9.1. Each initiator again
sends out its ID, and messages with the largest ID are the only one completing their
round trip. However, since we are working with an anonymous ring, processes do not
have a unique ID. Therefore, each initiator randomly selects an ID. The complication
then, of course, is that different processes may select the same ID, in which case the
election can be inconclusive.

The Itai-Rodeh election algorithm therefore progresses in rounds. If in a round
one active process selects a larger ID than any other active process, then it becomes
the leader. If, on the other hand, multiple active processes select the largest ID in
that round, then there will be a next round, in which only the active processes that
selected the largest ID may participate. At the start of every round, active processes
randomly select a new ID. Active processes keep track of round numbers, so that they
can ignore messages from earlier rounds; we will see that this is essential, as else
the algorithm could terminate in a configuration where all processes have become
passive.

Since different processes may select the same ID, a process cannot readily rec-
ognize its own message when it completes the round trip. Therefore, each message
is supplied with a hop count, which keeps track of how many processes have been
visited so far. A message arrives at its source if and only if its hop count is N . Hence,
it is required that processes know the ring size; in section 10.5 we will see that this
requirement is crucial.

Now the Itai-Rodeh election algorithm is presented in more detail. Initially, ini-
tiators are active at the start of election round 0, and noninitiators are passive. At the
start of an election round n ≥ 0, an active process p randomly selects an ID idp

from {1, . . . , N} and sends the message (n, idp, 1, false) into its outgoing channel.
The first value is the number of the election round in which this message evolved,
the second value the ID of its source, the third value the hop count, and the fourth

90 10 Anonymous Networks

value a Boolean that is set when an active process different from p with the ID idp is
encountered during the round trip.

Next, p waits for a message (n′, i, h, b) to arrive. When this happens, p acts as
follows, depending on the parameter values in this message.

• n′ > n, or n′ = n and i > idp:
p has received a message from a future round, or from the current round with a
larger ID. It becomes passive and sends (n′, i, h+ 1, b).

• n′ < n, or n′ = n and i < idp:
p has received a message from an earlier round, or from the current round with a
smaller ID. It purges the message.

• n′ = n, i = idp and h < N :
p has received a message from the current round with its own ID, but with a hop
count smaller than N . Therefore, p is not the source of this message. It sends
(n, idp, h+ 1, true).

• n′ = n, i = idp, h = N and b = true:
p has received back its own message. Since the Boolean was set to true during
the round trip, another active process selected the same ID as p in this round.
Therefore, p proceeds to round n+ 1.

• n′ = n, i = idp, h = N and b = false:
p has received back its own message. Since the Boolean is still false, all other
processes selected a smaller ID in this round and have become passive. Therefore,
p becomes the leader.

Passive processes simply pass on messages, increasing their hop count by one.
The Itai-Rodeh election algorithm is a Las Vegas algorithm that terminates with

probability one. There are infinite executions, in which active processes keep on
selecting the same ID in every election round. However, in each election round with
multiple active processes, with a positive probability not all active processes select
the same ID. And in that case, not all active processes will make it to the next round.
Therefore, with probability one, eventually one process will become the leader.

The following example shows that without round numbers the algorithm would
be flawed.

Example 10.1 We consider one possible computation of the Itai-Rodeh election al-
gorithm on an anonymous directed ring of size three. The processes p, q, r are all
initiators and know that the ring size is three.

– In round 0, p and q both select ID i, while r selects ID j, with i > j. The message
sent by q makes r passive, its Boolean is set at p, and it returns to q. Likewise,
the Boolean in the message sent by p is set at q, and returns to p. Next, p and q
move to the next round.

– In round 1, p and q select IDs k and �, respectively, with j > k > �. The
message sent by r in round 0 is slow; only now it reaches p. If round numbers
were omitted, then p and subsequently q would not recognize that r’s message is
from the previous round, and would become passive. Owing to round numbers,

10.4 Echo algorithm with extinction for anonymous networks 91

however, r’s message is purged by p, and p and q continue to compete for the
leadership. Since k > �, the message from q is purged at p, while the message
from p makes q passive and returns to p with Boolean true. So p becomes the
leader.

The computation in example 10.1 uses in an essential way that channels are not
FIFO. In case of FIFO channels, round numbers can be omitted.

It can be shown that, in case all processes are initiators, the average-case message
complexity of the Itai-Rodeh election algorithm is O(N logN): on average, the N
messages travel a logarithmic number of hops before they are purged, and the average
number of election rounds is finite. In view of the lower bound of Ω(N logN) on
the average-case message complexity of election algorithms for rings mentioned in
the previous chapter, one cannot hope to do better in a fully asynchronous setting.

Similar to the way the Chang-Roberts algorithm for election in directed rings
was turned into a probabilistic version for anonymous directed rings, Franklin’s al-
gorithm for undirected rings can be turned into a probabilistic version for anonymous
undirected rings. An advantage of the latter probabilistic algorithm, compared to the
Itai-Rodeh algorithm, is that round numbers modulo 2, that is, only 0 and 1, suffice.

10.4 Echo algorithm with extinction for anonymous networks

The echo algorithm with extinction from section 9.3 can be adapted to anonymous
undirected networks similar to the adaptation of the Chang-Roberts algorithm in the
previous section. The resulting election algorithm progresses in rounds; at the start of
every round, the active processes randomly select an ID and run the echo algorithm
with extinction. Again, round numbers are used to recognize messages from earlier
rounds. When a process is hit by a wave with a higher round number than its current
wave, or with the same round number but a higher ID, the process becomes passive
(if it was not already) and moves to that other wave.

Processes again need to know the network size, to be able to determine at comple-
tion of their wave whether it has covered the entire network. Namely, different waves
with the same ID in the same round can collide with each other, after which these
waves may both complete, but then covered disjoint parts of the network. Therefore,
when a process sends a wave message to its parent, it reports the size of its subgraph
in this wave, so that in the end the initiator of this wave can determine how many
processes participated in its wave. If a wave completes but did not cover the entire
network, then the initiator moves to the next election round. If a completed wave
covered the entire network, then its initiator becomes the leader.

We now present the echo algorithm with extinction for election in anonymous
undirected networks in more detail. Initially, initiators are active at the start of round
0, and noninitiators are passive.

Let process p be active. At the start of an election round n ≥ 0, p randomly
selects an ID idp ∈ {1, . . . , N}, and starts a wave, tagged with n and idp. As a third
parameter it adds a 0, meaning that this is not a message to its parent. This third
parameter is used to report the subtree size in messages to a parent.

92 10 Anonymous Networks

A process p, which is in a wave from round n with ID i, waits for a wave message
to arrive, tagged with a round number n′ and an ID j. When this happens, p acts as
follows, depending on the parameter values in this message.

• If n′ > n, or n′ = n and j > i, then p makes the sender its parent, changes to
the wave in round n′ with ID j, and treats the message accordingly.

• If n′ < n, or n′ = n and j < i, then p purges the message.
• If n′ = n and j = i, then p treats the message according to the echo algorithm.

As we said, the echo algorithm is adapted by letting each message sent upward in
the constructed tree report the size of its subtree; all other wave messages report 0.
When a process decides, meaning that its wave completes, it computes the size of
the constructed tree. If this equals the network size N , then the process becomes the
leader. Otherwise, it moves to the next election round, in which it randomly selects
a new ID from {1, . . . , N}, and initiates a new wave.

This election algorithm is a Las Vegas algorithm that terminates with probability
one. There are infinite executions, in which active processes keep on selecting the
same ID in every election round. However, with a positive probability, in election
rounds with multiple active processes, not all active processes select the same ID.
And in that case, not all active processes will make it to the next round. Therefore,
with probability one, eventually one process will become the leader.

Example 10.2 We consider one possible computation of the echo algorithm with
extinction on the anonymous undirected network below. All processes know that the
network size is six.

– In round 0, processes p, r, t select ID i and processes q, s, u select ID j, with
i > j. In the picture below, only the messages carrying ID i are shown; the
messages carrying j are all purged at reception. Messages that are depicted with
a solid arrow head are toward a parent.

p q r ts

u

(0, i, 0) (0, i, 0)

(0, i, 1) (0, i, 1)

(0, i, 0)

(0, i, 0)

(0, i, 0)

(0, i, 0)
(0, i, 0) (0, i, 1)

p, r, t start their wave by sending (0, i, 0) to their neighbors. Next, q and s receive
the message from p and t, respectively, and send (0, i, 0) to r. When q and s
receive (0, i, 0) from r, they interpret this as an answer to their message to r,
reporting a subtree of size 0. So q and s report a subtree of size 1 to p and t,
respectively. Moreover, u receives (0, i, 0) from r, and reports a subtree of size 1
to r. Finally, p, r, t all compute that their wave covered two processes and move
to round 1.

10.5 Computing the size of an anonymous ring is impossible 93

– In round 1, p selects ID k, and r, t select ID �, with k > �. In the next picture,
only the messages carrying ID k are shown.

p q r ts

u

(0, k, 0) (0, k, 0)

(0, k, 5) (0, k, 1)

(0, k, 0)

(0, k, 4)

(0, k, 0)

(0, k, 2)
(0, k, 0) (0, k, 1)

The wave of p completes and reports that it covered six processes. So p becomes
the leader.

Note that in round 1 another scenario would be possible, in which the wave of t
completes, and t computes that its wave covered two processes, so that it moves to
round 2. However, in the computation we consider, the wave of p in round 1 travels
faster than the waves of r and t, so that the wave of p completes.

It can be shown that, in case all processes are initiators, the average-case message
complexity of the echo algorithm with extinction is O(E): every round takes 2E
messages, and the average number of election rounds is finite.

10.5 Computing the size of an anonymous ring is impossible

In the previous sections we discussed Las Vegas algorithms for election in anony-
mous networks, which require that all processes in the network know the network
size. We now prove that this assumption is essential. There is no Las Vegas algorithm
to compute the size of anonymous rings; every probabilistic algorithm for comput-
ing the size of anonymous rings must allow for incorrect outcomes. This implies that
there is no Las Vegas algorithm for election in anonymous rings if processes do not
know the ring size. Because when there is one leader, network size can be computed
using a wave algorithm, initiated by the leader.

Theorem 10.2 There is no Las Vegas algorithm to compute the size of an anonymous
ring.

Proof. Suppose we have an algorithm for computing the size of a (directed or undi-
rected) anonymous ring of size N > 2, with processes p0, . . . , pN−1. Let C be a
computation of the algorithm on this ring that terminates with the correct outcome
N . We cut open this ring between p0 and pN−1, and glue a copy p′0, . . . , p

′
N−1 of the

ring in between. That is, we consider the following anonymous ring, of size 2N .

94 10 Anonymous Networks

p0

p′0

p′1

p′N−1 p1

pN−1

Let the computation C ′ on this ring consist of replaying C twice; once on the half
p0, . . . , pN−1 and once on the half p′0, . . . , p

′
N−1. In C ′, compared to C, p0 commu-

nicates with p′N−1 instead of pN−1, and pN−1 communicates with p′0 instead of p0.
But since p0 and p′0 send the same messages in C ′, and likewise for pN−1 and p′N−1,
and they do not have unique IDs to tell each other apart, none of these four processes
can determine this difference. In C ′ the processes in the ring of size 2N terminate
with the incorrect outcome N . ��

10.6 Itai-Rodeh ring size algorithm

The Itai-Rodeh ring size algorithm targets anonymous directed rings. In section 10.5
it was shown that it must be a Monte Carlo algorithm, meaning that it must allow for
incorrect outcomes. However, in the Itai-Rodeh ring size algorithm the probability
of an erroneous outcome can be arbitrarily close to zero, by letting the processes
randomly select IDs from a sufficiently large domain.

Each process p maintains an estimate estp of the ring size; initially estp = 2.
During any execution of the algorithm, estp will never exceed the correct estimate
N . The algorithm proceeds in estimate rounds. Every time a process finds that its
estimate is too conservative, it moves to another round. That is, a process p initiates
an estimate round at the start of the algorithm, and at each update of estp.

Each round, p randomly selects an ID idp from {1, . . . , R} and sends the mes-
sage (estp, idp, 1) to its next neighbor. The third value is a hop count, which is
increased by one every time the message is forwarded.

Now p waits for a message (est , id , h) to arrive. An invariant of such messages
is that always h ≤ est . When a message arrives, p acts as follows, depending on the
parameter values in this message.

• est < estp:
The estimate of the message is more conservative than p’s estimate, so p purges
the message.

• est > estp:
The estimate of the message improves upon p’s estimate, so p increases its esti-
mate. We distinguish two cases.

10.6 Itai-Rodeh ring size algorithm 95

– h < est :
The estimate est may be correct. So p sends (est , id , h + 1), to give the
message the chance to complete its round trip. Moreover, p performs estp ←
est .

– h = est :
The estimate est is too conservative, because the message traveled est hops
but did not complete its round trip. So p performs estp ← est + 1.

• est = estp:
The estimate of the message and of p agree. We distinguish two cases.
– h < est :

p sends (est , id , h+1), to give the message the chance to complete its round
trip.

– h = est :
Once again we distinguish two cases.

∗ id �= idp:
The estimate est is too conservative, because the message traveled est hops
but did not complete its round trip. So p performs estp ← est + 1.

∗ id = idp:
Possibly p’s own message returned. (Or a message originating from a process
est hops before p that unfortunately happened to select the same ID as p in
this estimate round.) In this case, p purges the message.

When the algorithm terminates, estp ≤ N for all processes p, because processes
increase their estimate only when they are certain it is too conservative. Furthermore,
estp converges to the same value at all processes p. For if this were not the case,
clearly there would be processes p and q where p is q’s predecessor in the ring and
p’s final estimate is larger than the one of q. But then p’s message in its final estimate
round would have increased q’s estimate to p’s estimate.

The Itai-Rodeh ring size algorithm is a Monte Carlo algorithm: it may terminate
with an estimate smaller than N . This can happen if in a round with an estimate
est < N all processes at distance est from each other happen to select the same ID.

Example 10.3 We consider one possible computation of the Itai-Rodeh ring size
algorithm on the following anonymous ring, which is directed in a clockwise fashion.

r

s

p

q

In the initial estimate round with estimate 2, let p and r select ID i, while q and
s select ID j. Then p and r send the message (2, i, 1), which is forwarded by q and
s, respectively, as (2, i, 2). Likewise, q and s send (2, j, 1), which is forwarded by r

96 10 Anonymous Networks

and p, respectively, as (2, j, 2). So all four processes receive a message (2, k, 2) with
k equal to their own ID. Hence, the algorithm terminates with the wrong estimate 2.

Example 10.4 We give another computation of the Itai-Rodeh ring size algorithm on
the anonymous directed ring from example 10.3, which does converge to the correct
estimate. In the initial estimate round, let p select ID i, while q and s select ID j,
and r selects ID k �= i. Then p and r send messages (2, i, 1) and (2, k, 1), which
are forwarded by q and s, as (2, i, 2) and (2, k, 2), respectively. Since i �= k, these
messages make p and r progress to the next estimate round, in which they both select
ID j and send (3, j, 1). These messages make q and s progress to the next estimate
round, because the estimate of these messages is larger that the estimate of q and s.
Let q select ID j and s ID � �= j. In this estimate round, the messages (3, j, 3) and
(3, �, 3) that originate from p and s, respectively, make s and r progress to the next
estimate round. The messages from r and s in this last round make p and q progress to
the next estimate round too. Finally, all processes terminate with the correct estimate
4.

The probability that the algorithm terminates with an incorrect outcome becomes
smaller when the domain {1, . . . , R} from which random IDs are drawn is made
larger. This probability tends to zero when R tends to infinity (for a fixed N).

The worst-case message complexity is O(N3): each process starts at most N −1
estimate rounds, and each round it sends out one message, which takes at most N
steps.

10.7 Election in IEEE 1394

The IEEE 1394 serial bus interface standard contains protocols for connecting de-
vices, in order to carry different forms of digital video and audio. Its architecture is
scalable, and devices can be added or removed.

We concentrate on the election algorithm in IEEE 1394, which is employed when
devices have been added to or removed from the network. Since it is deemed too
expensive to store IDs of other processes, no IDs are attached to messages. This
means that election is basically performed within an anonymous network. In view of
the dynamic nature of the network, processes are not aware of the network size. We
have seen in the previous section that no Las Vegas algorithm exists for these types
of networks, if cycles can be present. The topology of the undirected network is here
assumed to be acyclic, and a variant of the tree election algorithm from section 9.2
is employed. While in the tree election algorithm the process with the largest ID
becomes the leader, in IEEE 1394 the leader is selected among the two processes
that send a parent request to each other.

All processes in the network are initiators (so no wake-up phase is needed). When
a process has one possible parent, it sends a parent request to this neighbor. If the re-
quest is accepted, an acknowledgment is sent back. The last two parentless processes
may send parent requests to each other simultaneously; this is called root contention.

Exercises 97

A process p finds itself in root contention if it receives a parent request instead of an
acknowledgment from a neighbor q in reply to its parent request. Then p randomly
decides to either immediately send a parent request again, or wait some time for an-
other parent request from q. In the latter case, if p does not receive another parent
request from q within the waiting period, then p once again randomly decides to ei-
ther immediately send a parent request or wait some more time. Root contention is
resolved when one of the processes waits while the other sends immediately. Then
the process that is waiting becomes the leader.

Example 10.5 We run the IEEE 1394 election protocol on an acyclic undirected
network of three processes p, q, r, with channels pq and qr.

– p and r have only one possible parent, so they send a parent request to q.
– q receives the parent request of r and sends an acknowledgment back to r.
– q has only one possible parent left, so it sends a parent request to p. Now p and q

are in root contention.
– p and q receive each other’s parent requests. Now p (randomly) decides to wait

some time, while q decides to send a parent request again immediately.
– p receives the parent request of q and sends back an acknowledgment. Thus p has

become the leader.

In practice the election algorithm in IEEE 1394 is sometimes employed on net-
works that contain a cycle, which leads to a deadlock. For example, if the network
is an undirected ring, no process ever sends a parent request, because every process
has two possible parents. Therefore, the election algorithm contains a timeout mech-
anism, so that networks containing a cycle lead to a timeout.

Bibliographical notes

The impossibility results regarding election in and computing the size of an anony-
mous network date back to [4]. The Itai-Rodeh election and ring size algorithms
originate from [39]. A variant of the Itai-Rodeh election algorithm without round
numbers in case of FIFO channels was proposed in [32]. A probabilistic version of
Franklin’s algorithm was presented in [9]. The echo algorithm with extinction for
anonymous networks stems from [76]. The IEEE 1394 standard was published in
[38].

Exercises

Exercise 10.1 [76] Give a centralized algorithm for assigning unique IDs to pro-
cesses that terminates after at most D + 1 time units.

98 10 Anonymous Networks

Exercise 10.2 Assume a Monte Carlo algorithm, and a (deterministic) algorithm to
check whether the Monte Carlo algorithm terminated correctly. Give a Las Vegas
algorithm that terminates with probability one.

Suppose the Monte Carlo algorithm gives a correct outcome with some probabil-
ity π. How many applications of this algorithm does it take on average to come to a
correct outcome?

Exercise 10.3 Apply the Itai-Rodeh election algorithm to an anonymous directed
ring of size three, in which all processes know the network size. Initially, let two pro-
cesses select the ID i, and one the ID j, with i > j. Give one possible computation.

Exercise 10.4 Give a probabilistic version of the Dolev-Klawe-Rodeh algorithm for
election in anonymous directed rings of known size. Argue that your algorithm is a
Las Vegas algorithm that terminates with probability one.

Exercise 10.5 Apply the echo algorithm with extinction to elect a leader in the fol-
lowing anonymous undirected network. All processes are initiators and know the
network size. In election round 0, let p and r select ID i, while q and s select ID j,
with i > j.

p q r

s

Give a computation in which s becomes the leader in round 1. Explain why, in such
a computation, p and r will not both progress to round 1.

Exercise 10.6 Argue that there is no Las Vegas algorithm for election in anonymous
rings of unknown size.

Exercise 10.7 Give a Monte Carlo algorithm for election in anonymous networks of
unknown size. What is the success probability of your algorithm?

Exercise 10.8 Argue that there does not exist a termination detection algorithm that
always correctly detects termination on anonymous rings.

Exercise 10.9 Give an (always correctly terminating) algorithm for computing the
size of anonymous acyclic networks.

Exercise 10.10 Apply the Itai-Rodeh ring size algorithm to an anonymous directed
ring of size three in the following two cases.

(a) All three processes initially choose the same ID. Show that the algorithm com-
putes ring size two.

Exercises 99

(b) Only two processes initially choose the same ID. Show that the algorithm com-
putes ring size three.

Exercise 10.11 Consider an anonymous ring of which the size N is an odd prime
number, and channels are FIFO. Determine the probability that the Itai-Rodeh ring
size algorithm computes the correct ring size N .

Exercise 10.12 Given a Monte Carlo algorithm to compute the size of anonymous
rings, and an ε > 0. Argue that there exists an N such that the probability that the
algorithm terminates with the correct outcome on an anonymous ring of size N is
smaller than ε.

Exercise 10.13 In case of root contention in the IEEE 1394 election algorithm, is it
optimal for the average-case time complexity to give an equal chance of fifty percent
to both sending immediately and waiting for some time?

11

Synchronous Networks

A synchronous system is a network in which the processes proceed in lockstep. That
is, a synchronous system proceeds in pulses, and in each pulse, each process:

1. sends messages to its neighbors,
2. receives messages from its neighbors, and
3. performs internal events.

Messages that are sent in a pulse must reach their destination before the receiver
moves to the next pulse.

A synchronizer turns a network with asynchronous communication into a syn-
chronous system. Thus one can develop a distributed algorithm for synchronous
systems, which in some cases is easier than developing it for a setting with fully
asynchronous communication, and then use a synchronizer to make this algorithm
applicable to general networks.

11.1 A simple synchronizer

A synchronizer must make sure that a process only moves to the next pulse when it
has received all messages for its current pulse. A simple synchronizer can be imple-
mented as follows. At the start of each pulse, processes are required to send exactly
one message to each neighbor. If a process wants to send multiple messages to a
neighbor in one pulse, these can be lumped together. If a process does not want to
send a message to a neighbor in a pulse, it sends a dummy message. When a pro-
cess has received a message from all its neighbors in a pulse, it can perform internal
events, and move to the next pulse. The simple synchronizer can be initiated by any
process, by sending messages to all its neighbors in the first pulse.

Initialization gives a time delay of at most D time units, after which each process
will have received a message. If the last process to start a pulse does so at time t,
then each process is guaranteed to receive its messages in this pulse no later than
time t+ 1. Hence, the time overhead is at most one time unit per pulse.

102 11 Synchronous Networks

The main drawback of the simple synchronizer is a high message overhead: every
pulse in the worst case gives rise to 2E dummy messages.

11.2 Awerbuch’s synchronizer

Awerbuch’s synchronizer for undirected networks comprises three classes of syn-
chronizers: α, β, and γ. The α synchronizer has a better time complexity, while the
β synchronizer has a better message complexity. The γ synchronizer is a mix of the
α and β synchronizers, combining the best of both worlds.

Let a basic algorithm run on the network. A process becomes safe in a pulse when
it knows that all the basic messages it sent in this pulse have reached their destination.
Each basic message is therefore acknowledged, and a process becomes safe in a pulse
as soon as all the basic messages it sent in this pulse have been acknowledged. A
process can move to the next pulse when all its neighbors have become safe in its
current pulse.

We note that often acknowledgments of messages come for free, since they may
be part of the underlying transport layer anyhow, as is the case in TCP. Therefore, we
take the liberty to ignore them in the analysis of the message overhead of Awerbuch’s
synchronizer.

α synchronizer

In the α synchronizer, when a process has received acknowledgments for all the basic
messages it sent in a pulse, it sends a safe message to its neighbors. When a process
p has received safe messages from all its neighbors in a pulse, it moves to the next
pulse. Namely, then all the basic messages sent by p’s neighbors in this pulse have
reached their destination, so in particular p must have received all basic messages for
this pulse.

In every pulse, the α synchronizer requires 2E safe messages. If the last process
to start a pulse does so at time t, then this process is guaranteed to receive acknowl-
edgments for its basic messages in this pulse no later than time t+2, so each neighbor
will receive a safe message no later than time t + 3. Hence, the time overhead is at
most three time units per pulse.

β synchronizer

The β synchronizer reduces the number of required safe messages. The key idea is
to include an initialization phase, in which a centralized wave algorithm from chapter
4 is employed to build a spanning tree of the network. The safe messages travel up
the tree to the root. When the root of the tree has received safe messages from all its
children, all processes have become safe, so that all processes can move to the next
pulse. Then next messages travel down the tree to start this next pulse.

To be more precise, when a nonroot has in a pulse received acknowledgments
for all the basic messages it sent in this pulse as well as safe messages from all its
children in the tree, it sends a safe message to its parent in the tree. When the root

11.2 Awerbuch’s synchronizer 103

of the tree has in a pulse received acknowledgments for all the basic messages it sent
as well as safe messages from all its children, or when a nonroot receives a next
message from its parent, it sends a next message to its children, and moves to the
next pulse.

In comparison to the α synchronizer, where 2E safe messages per pulse are sent,
the β synchronizer uses N − 1 safe and N − 1 next messages, since they are sent
only through tree edges. One penalty is the overhead of building a spanning tree to
start with. More important, the time overhead of the β synchronizer is more severe
than of the α synchronizer. If the last process to start a pulse does so at time t, then
this process is guaranteed to receive acknowledgments for its basic messages in this
pulse no later than time t+2. So if the spanning tree has depth k, the root will receive
a safe message from its children no later than time t+ k + 2, and each nonroot will
receive a next message from its parent no later than time t + 2k + 2. Hence, the
time overhead is at most 2k + 2 time units per pulse.

γ synchronizer

The γ synchronizer divides the network into clusters, and within each cluster a span-
ning tree is built. Between each pair of neighboring clusters, that is, distinct clusters
that are connected by a channel, one of these connecting channels is selected as a
designated channel. Each pulse consists of three phases. First, the β synchronizer is
applied in each cluster to determine that all the processes in the cluster have become
safe. Next, clusters signal to each other via the designated channels that they contain
only safe processes, by means of the α synchronizer. Finally, within each cluster the
β synchronizer is used once more, to conclude that all neighboring clusters are safe,
so that all processes in the cluster can move to the next pulse.

As we said, each pulse, first the β synchronizer is applied within each cluster.
Note that a process must receive acknowledgments for all the basic messages it sent,
so also to neighbors outside its cluster, before it can become safe. When the next
messages of the β synchronizer travel down the tree within a cluster, the processes
do not immediately move to the next pulse. Instead, they send cluster-safe mes-
sages into their designated channels. When a nonroot has received cluster-safe
messages through all its designated channels as well as from all its children, it sends
a cluster-safe message to its parent. When a root has received cluster-safe mes-
sages through all its designated channels as well as from all its children, or when a
nonroot receives a cluster-next message from its parent, it sends a cluster-next
message to its children, and moves to the next pulse.

The message overhead of the γ synchronizer is:

• a safe, a next, a cluster-safe, and a cluster-next message through each tree
edge in any cluster, and

• two cluster-safe messages, one either way, through each designated channel.

Let the spanning trees of the clusters have depth at most �. If the last process to
start a pulse does so at time t, then this process is guaranteed to receive acknowledg-
ments for its basic messages in this pulse no later than time t + 2. So each root will

104 11 Synchronous Networks

receive a safe message from its children no later than time t+ �+ 2, and each non-
root will receive a next message from its parent no later than time t+ 2�+ 2. Then
cluster-safe messages through designated channels will reach their destination no
later than time t + 2� + 3. So each root will receive a cluster-safe message from
its children (and through its designated channels) no later than time t + 3� + 3, and
each nonroot will receive a cluster-next message from its parent no later than time
t+ 4�+ 3. Hence, the time overhead is at most 4�+ 3 time units per pulse.

In conclusion, on one hand we want to have few clusters to minimize the number
of designated channels and thus reduce the message overhead. On the other hand, we
want the trees in the clusters to have a small depth to minimize the time overhead.

Example 11.1 The network below has been divided into three clusters. The dark
processes depict the roots, and the dark lines depict the tree edges and the designated
channels.

Since there are fifteen tree edges in total, and two designated channels, the message
overhead of the γ synchronizer in a pulse consists of sixty messages through the tree
edges plus four messages through the designated channels. The trees all have depth
one, that is, � = 1, so the time overhead of the γ synchronizer is at most seven time
units per pulse.

Note that because the network has 36 channels, the α synchronizer would give
a message overhead of 72 safe messages per pulse. Furthermore, since a spanning
tree of the entire network has depth at least three, that is, k = 3, the β synchronizer
may give a time overhead of eight time units per pulse.

11.3 Bounded delay networks with local clocks 105

11.3 Bounded delay networks with local clocks

This section discusses a synchronizer for bounded delay networks, meaning that an
upper bound dmax is known on network latency; when a message is sent, it is guar-
anteed to reach its destination within dmax time units.

Moreover, each process p is supposed to have a local clock Cp. A process can
read as well as adjust the value of its local clock. The time domain is R≥0, that is,
the nonnegative real numbers. We distinguish real time, meaning time progression in
the real world, from local clock times, which try to estimate real time. At real time
τ , the clock at p returns the value Cp(τ). The local clocks are started at real time 0:
for all processes p, Cp(0) = 0.

Each local clock Cp is assumed to have ρ-bounded drift, for some ρ > 1, com-
pared to real time. That is, if τ2 ≥ τ1, then

1

ρ
(τ2 − τ1) ≤ Cp(τ2)− Cp(τ1) ≤ ρ(τ2 − τ1).

To build a synchronous system, the local clocks should moreover have precision
δ for some δ > 0. That is, at any time τ and for any pair of processes p, q:

|Cp(τ)− Cq(τ)| ≤ δ.

Consider a bounded delay network, with local clocks that have ρ-bounded drift
and precision δ; we assume that upper bounds for ρ and δ are known. The synchro-
nizer is defined as follows: when a process reads the time

(i− 1)(ρ2δ + ρdmax)

at its local clock, it starts pulse i, for any i ≥ 1.

Theorem 11.1 The synchronizer for bounded delay networks, with local clocks that
have ρ-bounded drift and precision δ, is correct.

Proof. We must show that any process p is guaranteed to receive all its messages for
a pulse i ≥ 1 before starting pulse i+1. It suffices to prove that for all processes p, q
and all τ ,

C−1
q (τ) + dmax ≤ C−1

p (τ + ρ2δ + ρdmax)

(where C−1
r (τ) is the first moment in real time that the clock of process r returns the

value τ). Because taking τ = (i− 1)(ρ2δ + ρdmax), this implies that q starts pulse i
at least dmax time units before p starts pulse i+1. Since network latency is assumed
to be at most dmax, this assures that p receives the messages from q for pulse i in
time.

The desired inequality follows immediately from the following two inequalities:

C−1
q (τ) ≤ C−1

p (τ + ρ2δ) (11.1)

C−1
p (τ) + υ ≤ C−1

p (τ + ρυ) (11.2)

106 11 Synchronous Networks

(In the first inequality, add a summand dmax at both sides; in the second inequality,
replace τ by τ +ρ2δ and υ by dmax.) We now set out to prove these two inequalities.

Consider the moment in time that q’s clock returns some value τ − δ, and let
real time progress for ρδ time units. Since q’s clock is ρ-bounded from below, in that
period q’s clock will progress with at least δ time units, so it will return a clock value
of at least τ . This can be depicted as follows:

real time

Cq

ρδ

τ − δ ≥ τ

In other words,
C−1

q (τ) ≤ C−1
q (τ − δ) + ρδ.

Furthermore, since local clocks have precision δ,

C−1
q (τ − δ) ≤ C−1

p (τ).

Combining these two inequalities, we conclude that for all τ ,

C−1
q (τ) ≤ C−1

p (τ) + ρδ (11.3)

Now consider the moment in time that p’s clock returns some value τ , and let
real time progress for υ time units. Since p’s clock is ρ-bounded from above, in that
period p’s clock will progress with at most ρυ time units, so it will return a clock
value of at most τ + ρυ. This can be depicted as follows:

τ ≤ τ + ρυ
Cp

real time
υ

In other words, we have argued that inequality (11.2) holds. Furthermore, inequalities
(11.3) and (11.2), with υ = ρδ, together yield inequality (11.1). ��

11.4 Election in anonymous rings with bounded expected delay

Bounded expected delay networks relax the restriction of bounded network latency
to a known upper bound on the expected network latency. This means that arbitrarily
long message delays are possible, but very long delays are less probable than short
delays. In this setting, for anonymous directed rings in which all processes know the

11.4 Election in anonymous rings with bounded expected delay 107

ring size N , a Las Vegas election algorithm exists with an average-case message and
time complexity of O(N). This shows that even mild synchrony restrictions can be
helpful for the development of efficient distributed algorithms. We recall that without
restrictions on the expected network latency, there is a lower bound O(N logN) for
the average-case message complexity of election algorithms on rings.

The election algorithm for anonymous directed rings with bounded expected de-
lay, which we refer to as the resuscitation algorithm, requires that processes have
clocks with ρ-bounded drift, for some ρ > 1. The algorithm starts, just as in the tree
election algorithm, with a wake-up phase, in which each initiator, and each noninitia-
tor when it is woken up, sends a wake-up message to its successor in the ring. After
sending this message, the process becomes idle. Each (awake) process can be in four
states: idle, active, passive, or leader.

Each process p maintains a counter np-hopsp, which estimates from below the
number of hops between p and its first nonpassive predecessor in the ring. Initially,
np-hopsp = 1 at all processes p. An idle process p at each clock tick (so every
moment its clock progresses one time unit) remains idle with some probability πp ∈
〈0, 1〉 and become active with probability 1− πp. When p becomes active, it sends a
message 〈np-hops, 1〉, where the argument provides the receiver with a safe value
for np-hops .

Let a message 〈np-hops, h〉 arrive at a process q. Then q performs the assign-
ment np-hopsq ← max{np-hopsq, h} and acts as follows, depending on its state.

• In case q is idle or passive, it sends 〈np-hops,np-hopsq + 1〉. And if q is idle,
then it becomes passive.

• In case q is active, either it becomes idle, if h < N , or it becomes the leader, if
h = N .

When a process q receives a message 〈np-hops, h〉 from its predecessor p, at
least the first h − 1 predecessors of q in the ring are passive. This can be seen by
induction on h: the case h = 1 is trivial, and if h > 1, then clearly p is passive,
and must have received a message 〈np-hops, h − 1〉 in the past, so by induction
the first h − 2 predecessors of p in the ring are also passive. Since np-hopsq stores
the maximum of all the messages q has received, at least the first np-hopsq − 1
predecessors of q in the ring are passive.

We discuss the correctness of the resuscitation algorithm. The number of mes-
sages in transit always equals the number of active processes in the ring: initially,
both numbers are zero; processes that become active send a message; idle and passive
processes forward messages; and at arrival of a message, active processes become
nonactive and do not forward the message. Since only idle processes can become
passive, it follows that at the moment a message arrives, there must be an active pro-
cess. Active processes do not become passive at the arrival of a message, so there
is always a nonpassive process. Furthermore, when a process becomes active, there
is a positive probability that the message it sends will complete the round trip, after
which the process becomes the leader. And we have argued before that when a pro-
cess receives 〈np-hops, N〉, all other N − 1 processes must have become passive.

108 11 Synchronous Networks

To conclude, the resuscitation algorithm is a Las Vegas algorithm that terminates
with probability one.

Example 11.2 We consider one possible computation of the resuscitation algorithm
on an anonymous directed ring with processes p, q, r. At the first tick of their clocks,
all three processes happen to become active and send 〈np-hops, 1〉. Next, p and
q receive these messages from r and p, respectively, and both become idle. At the
next tick of its clock, p becomes active again and sends 〈np-hops, 1〉. This message
arrives at q, which becomes passive and sends 〈np-hops, 2〉. This message arrives
at r, which sets np-hopsr to 2 and becomes idle. Finally, the message 〈np-hops, 1〉
that q sent at the start of the computation arrives at r. As a result, r becomes passive
and sends 〈np-hops, 3〉 (because np-hopsr = 2). When this message arrives at p,
it becomes the leader.

The computation in this example shows that it is beneficial for the message com-
plexity that an idle or passive process r, at the arrival of a message 〈np-hops, h〉,
forwards 〈np-hops,np-hopsr + 1〉 instead of 〈np-hops, h + 1〉. Otherwise, at
the end of the computation in the example, r would not send 〈np-hops, 3〉 but
〈np-hops, 2〉 to p. Then p would have become idle, instead of the leader.

Key to the favorable average-case message complexity of the resuscitation algo-
rithm mentioned at the start of this section is a smart choice of the probability πp

with which an idle process p remains idle at a clock tick. This choice depends on the
number of idle processes in the ring; the more idle processes, the larger πp should be,
to maximize the chance that exactly one idle process becomes active, and its mes-
sage completes the round trip without any other idle process becoming active in the
meantime. Therefore, the initial value of πp depends on N , and πp decreases at every
increase of np-hopsp:

πp =

(
N − 1

N + 1

)np-hopsp
N

.

We argue that these dynamic values of the πp yield an average-case message and
time complexity of O(N). For simplicity, we assume that local clocks are perfectly
synchronized with real time, that messages on average take exactly one time unit
to reach their destination, and that the values np-hopsp at nonpassive processes p
always equal the number of hops between p and its first nonpassive predecessor. The
forthcoming argumentation is somewhat more involved when clocks have ρ-bounded
drift, or np-hopsp may temporarily be smaller than the number of hops between p
and its first nonpassive predecessor.

Consider a clock tick at which all nonpassive processes are idle. By assumption,
the values of the parameters np-hopsp of the nonpassive processes p always add up
to N . Therefore, the probability that the idle processes all remain idle at this clock
tick, that is, the product of the πp of the idle processes p, is N−1

N+1 . So the probability
that an idle process becomes active and sends a message at this clock tick is 2

N+1 . By
assumption, a round trip of this message on average takes N time units. Therefore,

Exercises 109

the probability that another idle process becomes active during this round trip is at
most 1 − (N−1

N+1)
N , which is at most 8

9 because N ≥ 2; so this probability has an
upper bound < 1 that is independent of the ring size. In conclusion, on average
once every O(N) time units an idle process becomes active, and with an average
probability of O(1) the message of this active process completes its round trip. These
two observations together imply that the average-case message and time complexity
of the resuscitation algorithm are O(N).

Bibliographical notes

Awerbuch’s synchronizer originates from [6]. Bounded delay networks were intro-
duced in [21], and a synchronizer for bounded delay networks with local clocks that
have bounded drift was presented in [76]. Expected bounded delay networks and the
resuscitation algorithm stem from [8].

Exercises

Exercise 11.1 Consider a network of processes p0, . . . , pN−1 on a line (so with di-
ameter N − 1). Let p0 initiate the simple synchronizer. Give an example where at
some point p0 is in pulse N − 1 while pN−2 is in pulse 1.

Exercise 11.2 Give an example to show that with the α synchronizer a process can
be two pulses ahead of another process in the network. Argue that with the β syn-
chronizer this can never be the case.

Exercise 11.3 Argue the correctness of the γ synchronizer.

Exercise 11.4 Suppose that performing internal events at the end of a pulse takes
time, and that an upper bound ε is known for this processing time. Explain how the
synchronizer for bounded delay networks, with local clocks that have ρ-bounded
drift and precision δ, needs to be adapted. Argue that your adapted synchronizer is
correct.

Exercise 11.5 Suppose that the resuscitation algorithm would not start with a wake-
up phase, but instead initiators would be idle and noninitiators would be passive at the
start. Explain why then, in case of a single initiator, the average-case time complexity
would not be O(N).

12

Crash Failures

In practice, processes in a distributed system may crash, meaning that they stop ex-
ecuting unexpectedly. In this chapter we consider how the rest of the system can
cope with a crash of one or more processes, if at all possible. The next chapter will
consider the more severe type of so-called Byzantine failures, where processes may
show behavior that is not in line with the specification of the distributed algorithm
that is being executed.

The problem of failures can be alleviated by including redundancy and replica-
tion in the system, and letting processes negotiate before a certain action is taken. A
typical example is a database management system in which the processes collectively
decide whether to commit or abort a transaction.

The challenge we pose to the system is to let its processes agree on a single value,
even though some processes may have crashed. The (binary) consensus problem is
that the correct processes, that is, the processes that have not crashed (or, in the next
chapter, that are not Byzantine), must eventually uniformly decide for either 0 or 1. In
a crash consensus algorithm to solve this problem, each process randomly chooses an
initial value 0 or 1; so with N processes there are 2N different initial configurations.
In all executions of a crash consensus algorithm, each correct process should perform
one decide event, and the following three properties must be satisfied.

• Termination: every correct process eventually decides for either 0 or 1.
• Agreement: all correct processes decide for the same value.
• Validity: if all processes choose the same initial value, then all correct processes

decide for this value.

The validity requirement rules out trivial solutions where the processes always decide
for 0, or always decide for 1, irrespective of their initial values.

A reachable configuration of a crash consensus algorithm is called bivalent if
from this configuration one can reach a terminal configuration where consensus has
been reached on the value 0, as well as a terminal configuration where consensus
has been reached on the value 1. The validity requirement implies that each crash
consensus algorithm has a bivalent initial configuration; see exercise 12.1.

112 12 Crash Failures

A k-crash consensus algorithm, for a k > 0, is a crash consensus algorithm that
can cope with up to k crashing processes. A basic assumption we make is that the
network topology is complete. This guarantees that the network topology always
stays strongly connected, even when processes have crashed.

12.1 Impossibility of 1-crash consensus

In this section, we assume that processes cannot observe whether some process has
crashed. If a process does not send messages for a very long time, this may simply
be because the process or its outgoing channels are very slow. It turns out that in this
setting one cannot hope to develop a terminating 1-crash consensus algorithm. It does
not matter how large the network is, the prospect of one crashing process suffices to
yield infinite executions in which no decision is ever made. The basic idea behind this
impossibility result is that a decision for either 0 or 1, in an asynchronous setting,
must be enforced by an event at a single process. But what if this process crashes
immediately after this event, and in case of a send event, the message travels through
the channel for a very long, indefinite amount of time? Then at some moment in
time the remaining processes should organize themselves to mimic the decision of
the crashed process, but without any input from this crashed process. This is shown
to be impossible, if crashes cannot be observed.

Theorem 12.1 There is no terminating algorithm for 1-crash consensus.

Proof. Consider any 1-crash consensus algorithm. Let γ be a bivalent configuration.
Then γ → γ0 and γ → γ1, where γ0 can lead to decision 0 and γ1 to decision 1. We
argue that γ0 or γ1 must be bivalent. We distinguish two cases.

• The transitions γ → γ0 and γ → γ1 correspond to events e0 and e1 at different
processes p0 and p1, respectively. Then in γ0 the event e1 at p1 can still be per-
formed, and likewise in γ1 the event e0 at p0 can still be performed. Performing
e1 at p1 in γ0 and performing e0 at p0 in γ1 lead to the same configuration δ, be-
cause in both cases the resulting configuration is reached from γ by performing
the concurrent events e0 and e1 at p0 and p1. So there are transitions γ0 → δ and
γ1 → δ. Hence, γ0 or γ1 is bivalent, if δ can lead to a decision 1 or 0, respectively.

• The transitions γ → γ0 and γ → γ1 correspond to events at the same process p.
In γ, p can crash. Moreover, the messages sent by p can take indefinitely long to
reach their destination. Therefore, in γ the processes except p must be b-potent
for some b ∈ {0, 1}. In a configuration, a set S of processes is said to be b-potent
if by executing only events at processes in S, some process in S can decide for b.
In γ0 and γ1 the processes except p are clearly still b-potent. So γ1−b is bivalent.

In conclusion, a bivalent configuration can always make a transition to some bivalent
configuration. Since the crash consensus algorithm has a bivalent initial configura-
tion, there is an infinite execution, visiting only bivalent configurations. ��

We can even construct an infinite execution that is fair; see exercise 12.3.

12.2 Bracha-Toueg crash consensus algorithm 113

12.2 Bracha-Toueg crash consensus algorithm

In chapter 10, to circumvent the impossibility of a terminating election algorithm
for anonymous networks, we moved to probabilistic algorithms. Here we follow the
same approach. First we discuss another impossibility result: there is no Las Vegas
algorithm for crash consensus if half of the processes can crash. Namely, then the
network can be divided into two disjoint halves, where in each half the processes do
not receive messages from the processes in the other half for a very long time, so that
they must act under the assumption that the processes in the other half have crashed.
As a result, the two halves may act as independent entities, that can come to different
decisions.

Theorem 12.2 Let k ≥ N
2 . There is no Las Vegas algorithm for k-crash consensus.

Proof. Suppose, toward a contradiction, that such an algorithm does exist. Divide the
processes into two disjoint sets S and T , which both contain at most �N

2 processes.
Since k ≥ �N

2 , the processes in S must be able to come to a decision by them-
selves, in case all processes in T have crashed. In other words, S is always 0-potent
or 1-potent. Likewise, T is always 0-potent or 1-potent. In each reachable configu-
ration, S and T should be either both 0-potent or both 1-potent. For otherwise they
could independently decide for different values, because they are disjoint sets.

Consider a bivalent initial configuration γ. There must be a configuration δ reach-
able from γ, and a transition δ → δ′, with S and T both only b-potent in δ and only
(1− b)-potent in δ′, for some b ∈ {0, 1}. Since this transition would correspond to a
single event, at a process in either S or T , clearly such a transition cannot exist. ��

If k < N
2 , then a Las Vegas algorithm for k-crash consensus does exist. The

Bracha-Toueg k-crash consensus algorithm, for k < N
2 , progresses in rounds. Ini-

tially, at the start of round 0, each process randomly chooses a value 0 or 1. The
weight of a process, holding value b ∈ {0, 1}, approximates from below the number
of processes that voted b in the previous round. In round 0, each process has weight
1.

In each round n ≥ 0, each correct, undecided process p sends its value and
weight to all processes, and determines a new value and weight, based on the first
N − k messages it receives in this round:

• p sends 〈n, valuep,weightp〉 to all processes (including itself).
• p waits until N − k messages 〈n, b, w〉 have arrived. (It purges/stores messages

from earlier/future rounds.)
– If w > N

2 for an incoming message 〈n, b, w〉, then valuep ← b.
Otherwise, valuep ← 0 if most messages voted 0, or else valuep ← 1.

– weightp is changed into the number of incoming votes for valuep in round n.
• If w > N

2 for more than k incoming messages 〈n, b, w〉, then p decides for b.

If p decides for b in round n, it broadcasts 〈n+1, b,N−k〉 and 〈n+2, b,N−k〉, and
terminates. This suffices because when a process decides, all other correct processes
are guaranteed to decide within two rounds; see the proof of theorem 12.3.

114 12 Crash Failures

In reality, p does not send messages to itself, but can simply include a message it
broadcasts in the collection of messages it receives from other processes in the same
round. Note that if p waited for more than N − k messages 〈n, b, w〉 in a round n,
then a deadlock could occur, in case k processes have crashed. Note also that if p
receives messages 〈n, b, w〉 and 〈n, 1 − b, w′〉, then w + w′ ≤ N , so that w and w′

cannot both be greater than N
2 . Note, finally, that since p waits for N − k messages

〈n, b, w〉 and can decide only if more than k of those messages have a weight greater
than N

2 , it is essential that N − k > k.

Example 12.1 Given a network of three processes p, q, r, and k = 1. Each round a
process requires two incoming messages to determine a new value and weight, and
two b-votes with weight 2 to decide for b. We consider one possible computation of
the Bracha-Toueg 1-crash consensus algorithm on this network.

– Initially, p and q randomly choose the value 0 and r the value 1, all three with
weight 1.

– In round 0, p takes into account the messages from p and r; it sets its value to 1,
and its weight to 1. Moreover, q and r both take into account the messages from
p and q; they set their value to 0, and their weight to 2.

– In round 1, q takes into account the messages from q and r; since both messages
carry weight 2, it decides for 0. Moreover, p and r both take into account the
messages from p and r; since the message from r carries weight 2, they set their
value to 0, and their weight to 1.

p

q

r

decides for 0

value = 0
weight = 1weight = 1

value = 0

– At the start of round 2, q crashes. So p and r can take into account only the
messages from p and r; as a result, they set their value to 0, and their weight to
2.

– In round 3, p and r can again only take into account the messages from p and r;
since both messages carry weight 2, they decide for 0.

– p and r send messages with value 0 and weight 2 for two more rounds, and
terminate.

Theorem 12.3 If scheduling of messages is fair, then the Bracha-Toueg k-crash con-
sensus algorithm, for any k < N

2 , is a Las Vegas algorithm that terminates with
probability one.

Proof. First we prove that processes cannot decide for different values. Then we
prove that the algorithm terminates with probability one, under the assumption that

12.3 Failure detectors 115

scheduling of messages is fair, meaning that each possible order of delivery of the
messages in a round occurs with a positive probability.

Suppose a process p decides for a value b at the end of a round n. Then at the start
of round n, valueq = b and weightq > N

2 for more than k processes q. Since in every
round, each correct, undecided process ignores messages from only k processes, in
round n these processes all take into account a message 〈q, b, w〉 with w > N

2 . So in
round n+1, all correct processes vote b. So in round n+2, all correct processes vote
b with weight N − k. Hence, after round n + 2, all correct processes have decided
for b. To conclude, all correct processes decide for the same value.

Due to fair scheduling, in each round there is a positive probability that all pro-
cesses receive the first N − k messages from the same N − k processes. After such
a round n, all correct processes have the same value b. Then after round n + 1, all
correct processes have the value b with weight N − k. And after round n + 2, all
correct processes have decided for b. In conclusion, the algorithm terminates with
probability one. ��

12.3 Failure detectors

The impossibility result in theorem 12.1, namely that there is no terminating 1-crash
consensus algorithm, assumes that crashes of processes cannot be observed. In the
next section we will see that this is a crucial assumption: when crashes can be de-
tected, there does exist a terminating k-crash consensus algorithm, if k < N

2 . In the
current section, we discuss the notion of failure detectors, their properties, and two
straightforward implementations with different properties.

As time domain we take R≥0. Each execution of a crash consensus algorithm
is provided with a failure pattern, consisting of sets F (τ) that contain the crashed
processes at time τ . Crashed processes cannot restart: τ0 ≤ τ1 ⇒ F (τ0) ⊆ F (τ1). It
is assumed that processes cannot observe F (τ).

Processes carry a failure detector, to try to detect crashed processes. With H(p, τ)
we denote the set of processes that are suspected to be crashed by (the failure detector
of) process p at time τ . Each execution of a crash consensus algorithm is provided
with a failure detector history H . In general, such suspicions may turn out be false,
typically because at a time τ a process p receives a message from a suspected process
q ∈ H(p, τ). However, we require that failure detectors are always complete: from
some time onward, every crashed process is suspected by every correct process.

A failure detector is called strongly accurate if only crashed processes are ever
suspected. In bounded delay networks, a strongly accurate (and complete) failure
detector can be implemented as follows. Suppose dmax is a known upper bound
on network latency. Let each process broadcast a message alive every ν time units.
Each process from which no message is received for ν+dmax time units has crashed.
Since crashed processes stop sending alive messages, the failure detector is clearly
complete. And the bound on network latency ensures that there can never be more
than ν+dmax time units between the arrival at p of subsequent alive messages from
q, so the failure detector is strongly accurate.

116 12 Crash Failures

A failure detector is called eventually strongly accurate if from some point in
time onward, only crashed processes are suspected. Suppose there is an unknown
upper bound on network delay. Again, let each process broadcast a message alive
every ν time units. An eventually strongly accurate (and complete) failure detector
can be implemented as follows. Each process p initially guesses as network latency
dp = 1. If p does not receive a message from a process q for ν + dp time units, then
p suspects that q has crashed. This suspicion may be false, in case the value dp is
too conservative. When p receives a message from a suspected process q, then q is
no longer suspected by p, and dp ← dp + 1. Since crashed processes stop sending
alive messages, the failure detector is clearly complete. And since network latency
is bounded, each process p can only finitely many times receive a message from a
suspected process and as a result increase dp. This guarantees that the failure detector
is eventually strongly accurate.

12.4 Consensus with a weakly accurate failure detector

A failure detector is called weakly accurate if some correct process is never suspected
by any process. In the presence of a weakly accurate failure detector, there is a simple
k-crash consensus algorithm for any k.

Let the processes be numbered: p0, . . . , pN−1. Initially, each process randomly
chooses a value 0 or 1. The crash consensus algorithm proceeds in rounds n =
0, . . . , N − 1. In a round n, the process pn acts as the coordinator:

• pn (if not crashed) broadcasts its value.
• Each process waits:
– either for an incoming message from pn, in which case it adopts the value of pn;
– or until it suspects that pn has crashed.

After round N − 1, each correct process decides for its value at that time.
This rotating coordinator algorithm is a k-crash consensus algorithm for any k <

N . Since the failure detector is weakly accurate, some correct process pi is never
suspected by any process. This implies that after round i, all correct processes have
the same value b. Then clearly in the rounds i+1, . . . , N −1, all processes keep this
value b. Hence, after round N − 1, all correct processes decide for b.

12.5 Chandra-Toueg algorithm

With an eventually strongly accurate failure detector, the proof of theorem 12.2,
that there is no Las Vegas algorithm for k-crash consensus if k ≥ N

2 , still applies.
Namely, it could take a very long, indefinite period of time before the failure detector
becomes strongly accurate, and up to that point there can still be false suspicions.

Theorem 12.4 Let k ≥ N
2 . There is no Las Vegas algorithm for k-crash consensus

based on an eventually strongly accurate failure detector.

12.5 Chandra-Toueg algorithm 117

Proof. Suppose, toward a contradiction, that such an algorithm does exist. Divide the
processes into two disjoint sets S and T , which both contain at most �N

2 processes.
Since k ≥ �N

2 , the processes in S are able to come to a decision by themselves,
as they must be able to cope if all processes in T have crashed. In other words, S
is always 0-potent or 1-potent. Likewise, T is always 0-potent or 1-potent. In each
reachable configuration, S and T should be either both 0-potent or both 1-potent,
for otherwise they could independently decide for different values. Namely, since the
failure detector is only eventually strongly accurate, the processes in S (or T) may
suspect for a very long period of time that the processes in T (respectively S) have
crashed, and at some point have to come to a decision by themselves.

Consider a bivalent initial configuration γ. Then there must be a configuration δ
reachable from γ, and a transition δ → δ′, with S and T both only b-potent in δ and
only (1−b)-potent in δ′, for some b ∈ {0, 1}. Since this transition would correspond
to a single event, at a process in either S or T , clearly such a transition cannot exist.
��

A failure detector is called eventually weakly accurate if from some point in time
on, some correct process is never suspected by any process. The Chandra-Toueg
crash consensus algorithm, which uses an eventually weakly accurate failure detec-
tor, is an always correctly terminating k-crash consensus algorithm for any k < N

2 .
Let the processes be numbered: p0, . . . , pN−1. Initially, each process randomly

chooses a value 0 or 1. The algorithm proceeds in rounds. Each process q records
the number of the last round last-updateq in which it updated its value; initially,
last-updateq = −1.

Each round n ≥ 0 is coordinated by the process pc with c = n mod N . Round
n progresses as follows.

• Every correct, undecided process q (including pc) sends to pc the message
〈vote, n, valueq, last-updateq〉.

• pc (if not crashed and undecided) waits until N − k such messages have ar-
rived, selects one, say 〈vote, n, b, �〉, with � as large as possible, and broadcasts
〈value, n, b〉.

• Every correct, undecided process q (including pc) waits either:
– until 〈value, n, b〉 arrives; then it performs valueq ← b and last-updateq ← n,

and sends 〈ack, n〉 to pc;
– or until it suspects that pc has crashed; then it sends 〈nack, n〉 to pc.
• pc waits for N − k acknowledgments. If more than k of them are positive, then

pc decides for b, broadcasts 〈decide, b〉, and terminates.

A correct, undecided process that receives 〈decide, b〉, decides for b and terminates.
The idea behind the decision criterion for the coordinator in a round n, the re-

ception of more than k positive acknowledgments, is that then more than k processes
have adopted the value b of the coordinator and set their last-update parameter to n.
Since in each round the coordinator ignores messages of only k processes and adopts
the value from a message with a maximal last-update, this guarantees that in future
rounds coordinators will always adopt the value b.

118 12 Crash Failures

Example 12.2 Given a complete network of three processes p0, p1, p2, and k = 1.
Each round the coordinator waits for two incoming votes, and needs two positive
acknowledgments to decide. We consider one possible computation of the Chandra-
Toueg 1-crash consensus algorithm on this network.

– Initially, p0 and p2 randomly choose the value 1 and p1 the value 0; last-update =
−1 at all three processes.

– In round 0, the coordinator p0 takes into account the messages from p0 and p1,
selects the message from p1 to determine its new value, and broadcasts the value
0. When p0 and p1 receive this message, they set their value to 0 and last-update
to 0, and send ack to p0; moreover, p1 moves to round 1. However, p2 moves
to round 1 without waiting for a message from p0, because its failure detector
falsely suspects that p0 has crashed; p2 sends nack to p0, and moves to round
1. The coordinator p0 receives the ack’s of p0 and p1, decides for 0, and crashes
before it can broadcast a decide message.

p0

p1

p2
value = 1
last-update = −1and crashed

decided for 0

last-update = 0
value = 0

– In round 1, the coordinator p1 can take into account only the messages from p1
and p2. It must select the message from p1 to determine its new value, because it
has the highest last-update. So p1 broadcasts the value 0. When p1 receives this
message, it sets its value to 0 and last-update to 1, and sends ack to itself. The
process p2 moves to round 2 without waiting for a message from p1, because
its failure detector falsely suspects that p1 has crashed; p2 sends nack to p0,
and moves to round 2. After p1 has received the ack and nack from p1 and p2,
respectively, it also moves to round 2.

p0

p1

p2
value = 1
last-update = −1

last-update = 1
value = 0

crashed

– In round 2, the coordinator p2 can take into account only the messages from p1
and p2. It must select the message from p1 to determine its new value, because
it has the highest last-update. So p2 broadcasts the value 0. When p1 and p2
receive this message, they set their value to 0 and last-update to 2, and send
ack to p2; moreover, p1 moves to round 3. The coordinator p2 receives the ack’s
of p1 and p2, decides for 0, and broadcasts 〈decide, 0〉. When p1 receives this
message, it also decides for 0.

Exercises 119

Theorem 12.5 In the presence of an eventually weakly accurate failure detector, the
Chandra-Toueg algorithm is an (always correctly terminating) k-crash consensus
algorithm for any k < N

2 .

Proof. First we prove that processes cannot decide for different values. Then we
prove that the algorithm always terminates.

Let round n be the first round in which the coordinator decides for a value, say
b. Then the coordinator received more than k ack’s in this round, so that:

(1) there are more than k processes q with last-updateq ≥ n, and
(2) last-updateq ≥ n implies valueq = b.

We argue, by induction on m − n, that properties (1) and (2) are preserved in all
rounds m > n. In round m, since the coordinator ignores votes of only k processes,
by (1) it takes into account at least one vote with last-update ≥ n to determine
its new value. Hence, by (2), the coordinator of round m sets its value to b, and
broadcasts 〈value,m, b〉. To conclude, from round n onward, processes can decide
only for b.

Now we argue that eventually some correct process will decide. Since the failure
detector is eventually weakly accurate, from some round onward, some correct pro-
cess p will never be suspected. So in the next round where p is the coordinator, all
correct processes will wait for a value message from p. Therefore, p will receive at
least N − k ack’s, and since N − k > k, it will decide. All correct processes will
eventually receive the decide message of p and will also decide. ��

Bibliographical notes

Impossibility of a terminating 1-crash consensus algorithm was proved in [30]. The
Bracha-Toueg crash consensus algorithm originates from [11], and the Chandra-
Toueg crash consensus algorithm from [15].

Exercises

Exercise 12.1 Prove that any 1-crash consensus algorithm has a bivalent initial con-
figuration.

Exercise 12.2 [76] Give terminating 1-crash consensus algorithms for each of the
following restrictions on the chosen values in initial configurations.

(a) An even number of processes choose the value 1.
(b) At least �N

2 + 1 processes choose the same value.

Exercise 12.3 Argue that each algorithm for 1-crash consensus exhibits a fair infi-
nite execution.

120 12 Crash Failures

Exercise 12.4 Give a Monte Carlo algorithm for k-crash consensus for any k.

Exercise 12.5 Consider a complete network of five processes. Apply the Bracha-
Toueg 2-crash consensus algorithm, where initially three processes choose the value
0 and two processes the value 1. Give two computations: one where all correct pro-
cesses decide for 0, and one where all correct processes decide for 1.

Exercise 12.6 [76] Consider the Bracha-Toueg k-crash consensus algorithm, for
k < N

2 .

(a) Let more than N+k
2 processes choose the value b in the initial configuration.

Prove that then always the correct processes decide for b within three rounds.
(b) Let more than N−k

2 processes choose the value b in the initial configuration. Give
a computation in which all correct processes decide for b within three rounds.

(c) Let N − k be even. Is a decision for b possible if exactly N−k
2 processes choose

the value b in the initial configuration?

Exercise 12.7 Give an example to show that if scheduling of messages is not fair,
then the Bracha-Toueg crash consensus algorithm may not terminate with probability
one.

Exercise 12.8 Give an example, with N = 3 and k = 1, to show that in the Bracha-
Toueg k-crash consensus algorithm, k incoming messages with a weight greater than
N
2 are not sufficient to decide.

Exercise 12.9 [76] The requirement of strong accuracy for failure detectors is
stronger than the requirement that processes that never crash are never suspected.
Give an example of a failure pattern and a failure detector history that satisfy the
latter property, but that are not allowed in case of a strongly accurate failure detector.

Exercise 12.10 Suppose that the implementation of the eventually strongly accurate
failure detection is adapted as follows. When p receives a message from a suspected
process q, then it no longer suspects q. If this message arrives ν + dp + ρ time units
after the previous message from q, with ρ > 0, then dp ← dp + ρ. Give an example
to show that this failure detector need not be eventually strongly accurate.

Exercise 12.11 Consider a complete network of five processes. Apply the Chandra-
Toueg 2-crash consensus algorithm, where initially four processes choose the value
0 and one process the value 1. Give a computation where all correct processes decide
for 1.

Exercise 12.12 Suppose we adapt the Chandra-Toueg algorithm k-crash consensus
for k < N

2 as follows. If the coordinator pc receives at least (instead of more than) k
acknowledgments ack, then pc decides for its value. Give an example to show that
this could lead to inconsistent decisions.

13

Byzantine Failures

In this chapter we consider Byzantine failures, meaning that a process may start to
show behavior that is not in line with the specification of the distributed algorithm
that is being executed. The class of Byzantine failures includes crash failures. We
assume that Byzantine failures can in general not be observed, and that processes are
either correct or Byzantine from the start.

Again, the challenge we pose to the system is to let its correct processes, that is,
the processes that are not Byzantine, agree on a value 0 or 1. The network topology
is still assumed to be complete.

In a (binary) Byzantine consensus algorithm, each correct process randomly
chooses an initial value 0 or 1. In all executions of a Byzantine consensus algo-
rithm, each correct process should perform exactly one decide event. The properties
termination and agreement mentioned at the start of chapter 12 must be satisfied,
together with a slightly strengthened version of validity.

• Validity: if all correct processes choose the same initial value, then all correct
processes decide for this value.

Similar to the case of crash consensus, the validity requirement implies that each
Byzantine consensus algorithm has a bivalent initial configuration.

A k-Byzantine consensus algorithm, for a k > 0, is a Byzantine consensus algo-
rithm that can cope with up to k Byzantine processes.

13.1 Bracha-Toueg Byzantine consensus algorithm

With Byzantine failures, fewer incorrect processes can be allowed than in the case of
crashing processes, if one wants to achieve a Las Vegas consensus algorithm. A k-
Byzantine consensus algorithm is possible only if k < N

3 . The reason is that correct
processes must be able to cope with k Byzantine processes, which may not cast a
vote. So they can collect votes from at most N − k processes, as else a deadlock
could occur. Among these N − k processes, k could be Byzantine. Only if k < N

3 ,

122 13 Byzantine Failures

it is guaranteed that the (in the worst case) N − 2k votes from correct processes
outnumber the k votes from Byzantine processes.

Theorem 13.1 Let k ≥ N
3 . There is no Las Vegas algorithm for k-Byzantine con-

sensus.

Proof. Suppose, toward a contradiction, that such an algorithm does exist. Since
k ≥ �N

3 , the processes can be divided into two sets S and T that both contain
N − k processes, while S ∩ T contains at most k processes.

Since S contains N − k elements, the processes in S must be able to come to a
decision by themselves, in case all processes outside S are Byzantine. In other words,
S is always 0-potent or 1-potent. Likewise, T is always 0-potent or 1-potent. In each
reachable configuration, S and T should be either both 0-potent or both 1-potent,
for else they could independently decide for different values. Namely, the processes
in S ∩ T could all be Byzantine, and could therefore be free to participate in an
execution leading to a decision for b with the processes in S, while participating in
an execution leading to a decision for 1− b with the processes in T .

Consider a bivalent initial configuration γ. Then there must be a configuration δ
reachable from γ, and a transition δ → δ′, with S and T both only b-potent in δ and
only (1−b)-potent in δ′, for some b ∈ {0, 1}. Since this transition would correspond
to a single event, at a process in either S or T , clearly such a transition cannot exist.
��

If k < N
3 , then a Las Vegas algorithm for k-Byzantine consensus does exist.

The Bracha-Toueg k-Byzantine consensus algorithm works as follows. The algo-
rithm progresses in rounds. Just as in the Bracha-Toueg crash consensus algorithm,
in each round, every correct, undecided process sends its value to all processes,
and determines a new value, based on the first N − k messages it receives in this
round: the new value is 0 if most messages voted 0, and 1 otherwise. A process p de-
cides for b if in a round it receives more than N+k

2 b-votes; note that by assumption
N+k
2 < N − k. Then p broadcasts 〈decide, b〉 and terminates. The other processes

interpret 〈decide, b〉 as a b-vote by p for all rounds to come. Note that they cannot
simply decide for b at the reception of this message, since p might be Byzantine. This
completes the informal description of the algorithm, except for a verification phase
of votes.

The example below shows that this algorithm would be flawed if in a round two
correct processes could accept different votes from a Byzantine process.

Example 13.1 Given a network of four processes p, q, r, s, and k = 1. Suppose
that q is Byzantine. We consider one possible computation of the Bracha-Toueg 1-
Byzantine consensus algorithm. Each round, a correct process waits for three votes,
and needs three b-votes to decide for b. Initially, p and s randomly choose the value
1 and r the value 0.

– In round 0, p, r, and s broadcast their value, while q sends a 0-vote to p and r,
and a 1-vote to s. Next, p and r take into account a 1-vote by p and 0-votes by q

13.1 Bracha-Toueg Byzantine consensus algorithm 123

and r, and set their value to 0. Furthermore, s takes into account 1-votes by p, q,
and s, decides for 1, and broadcasts 〈decide, 1〉.

– In round 1, p and r broadcast their value, while q broadcasts a 0-vote. Next, p
and r take into account 0-votes by p, q, and r, and decide for 0. So we have
inconsistent decisions.

The cause for the inconsistent decisions in example 13.1 is that in round 0, p and
r use a 0-vote from q while s uses a 1-vote from q, which can happen because q is
Byzantine. To avoid this mishap, the Bracha-Toueg Byzantine consensus algorithm
includes a verification phase of votes. When a process p receives a b-vote from a
process q, p does not accept this vote straightaway. Instead, p echoes this vote to all
processes, and it accepts a b-vote by q only if it receives an echo of a b-vote by q in
this round from more than N+k

2 processes. This guarantees that the correct processes
in a round never accept different votes from the same process, even if that process is
Byzantine.

As we said before, a process decides for b if it accepts more than N+k
2 b-votes

in a round. Since N+k
2 = N−k

2 + k, each correct processes then will find that more
than N−k

2 of the first N − k votes it accepts in this round are b-votes. So at the end
of this round all correct processes will take on the value b, and hence will continue
to do so for all future rounds.

We now give a more precise description of the Bracha-Toueg k-Byzantine con-
sensus algorithm. Initially, each correct process randomly chooses a value 0 or 1. In
each round n ≥ 0, each correct, undecided process p acts as follows:

• p sends 〈vote, n, valuep〉 to all processes (including itself).
• When p receives 〈vote,m, b〉 from a process q, it sends 〈echo, q,m, b〉 to all

processes (including itself).
• p stores incoming messages 〈vote,m, b〉 and 〈echo, q,m, b〉 with m > n for

future rounds.
• p counts incoming messages 〈echo, q, n, b〉 for each pair q, b. When more than

N+k
2 such messages have arrived, p accepts a b-vote by q.

• The round is completed when p has accepted votes from N−k processes. If most
votes are for 0, then valuep ← 0. Otherwise, valuep ← 1.

• If more than N+k
2 of the accepted votes are for b, then p decides for b, broadcasts

〈decide, b〉, and terminates.

The other processes interpret 〈decide, b〉 as a b-vote by p, and a b-echo by p for each
q, for all rounds to come.

Processes keep track whether multiple messages 〈vote,m, 〉 or 〈echo, q,m, 〉
arrive via the same channel; the sender must be Byzantine. To avoid miscounts, only
the first of these messages is taken into account.

Theorem 13.2 If scheduling of messages is fair, then the Bracha-Toueg k-Byzantine
consensus algorithm, for any k < N

3 , is a Las Vegas algorithm that terminates with
probability one.

124 13 Byzantine Failures

Proof. First we prove that processes cannot decide for different values. Then we
prove that the algorithm terminates with probability one, under the assumption that
scheduling of messages is fair.

Each round, the correct processes eventually accept N − k votes, since there are
at least N − k correct processes which faithfully confirm each other’s votes, and by
assumption N − k > N+k

2 .
In a round n, let correct processes p and q accept votes for b and b′, respectively,

from a process r. Then p and q received more than N+k
2 messages 〈echo, r, n, b〉 and

〈echo, r, n, b′〉, respectively. More than k processes, so at least one correct process,
sent such messages to both p and q. This implies that b = b′.

Suppose a correct process p decides for b at the end of a round n, meaning that p
accepted more than N+k

2 b-votes. In every round, each correct process ignores votes
from only k processes, and we argued earlier that two correct processes never accept
different values from the same process. So since p accepted more than N+k

2 b-votes
in round n, all correct processes will accept more than N+k

2 − k = N−k
2 b-votes

in round n. Hence, after round n, all correct processes will have the value b. As a
consequence, every correct process will vote b in each round m > n, because in
each round m ≥ n it accepts at least N − 2k > N−k

2 b-votes. This implies that
correct processes cannot decide for different values.

Let S be a set of N − k correct processes. Due to fair scheduling, in each round
there is a probability ρ > 0 that each process in S accepts N − k votes from the
processes in S. With probability ρ2 this happens in consecutive rounds n, n+1. After
round n, all processes in S have the same value b. After round n+1, all processes in S
have decided for b, and broadcast 〈decide, b〉. To conclude, the algorithm terminates
with probability one. ��

Example 13.2 We revisit example 13.1, but now taking into account the verification
phase of votes. Given a network of four processes p, q, r, s, and k = 1. Suppose
that q is Byzantine. We consider one possible computation of the Bracha-Toueg 1-
Byzantine consensus algorithm on this network. Each round, a correct process needs
three confirming echoes to accept a vote, three accepted votes to complete the round,
and three accepted b-votes to decide for b. Initially, p and s randomly choose the
value 1 and r the value 0. In the pictures of the consecutive rounds, for every process
two accepted votes from other processes and its own value in that round are depicted,
which are used to determine the value of that process in the next round.

– In round 0, p and r accept a 1-vote by p and 0-votes by q and r, because they get
confirmations for these votes from p, q, r. As a result, they set their value to 0.
Furthermore, s accepts 1-votes by p and s, because it gets confirmations for these
votes from p, r, s. However, s does not accept a 1-vote by q, because it receives
only two confirmations, from q and s. In the end, s accepts a 0-vote by r, for
which it gets confirmations from p, r, s, and sets its value to 1.

13.2 Mahaney-Schneider synchronizer 125

p q

rs

1

0

0

0

0

1

value = 1

value = 1

Byzantine

value = 0

– In round 1, p and r accept 0-votes by p and q, because they get confirmations
for these votes from p, q, r. Moreover, r accepts a 0-vote by r, decides for 0, and
broadcasts 〈decide, 0〉. On the other hand, p accepts a 1-vote by s, because it
gets confirmations for these votes from p, r, s, and sets its value to 0. Once again,
s does not accept a 1-vote by q, because it receives only two confirmations, from
q and s. Instead, s accepts 0-votes by p and r, and a 1-vote by s, because it gets
confirmations for these votes from p, r, s. As a result, s sets its value to 0.

p q

rs

0

0

0

0

0

value = 0

value = 1

Byzantine

value = 0

1

– Now that all correct processes have the value 0, in all future rounds this will
remain the case. A decision for 0 by p and s could be postponed indefinitely, if
q gets a 1-vote accepted by p and s in successive rounds. However, in order to
complete this computation swiftly, we let 〈decide, 0〉 arrive at p and s, and in
round 2 we let p and s accept each other’s 0-vote, so that they decide for 0.

p q

rs

value = 0

value = 0

Byzantine

decided for 0

〈decide, 0〉

〈decide, 0〉

0

0

13.2 Mahaney-Schneider synchronizer

In this section we revisit bounded delay networks, in which there is an upper bound
dmax on network latency; processes carry a local clock with ρ-bounded drift for some
ρ > 1 (see section 11.3). It is shown that even in the presence of Byzantine processes,

126 13 Byzantine Failures

local clocks can be synchronized regularly so that they have a precision δ > 0: at
any time τ and for any pair of processes p, q, |Cp(τ)− Cq(τ)| ≤ δ.

First, it is shown that such a clock synchronization algorithm is possible only if
fewer than one-third of the processes are Byzantine.

Theorem 13.3 Let k ≥ N
3 . There is no k-Byzantine clock synchronization algo-

rithm.

Proof. Suppose we want to achieve clock synchronization so that the local clocks
have precision δ > 0. Consider a network of three processes p, q, r, where r is
Byzantine, and let k = 1. (The following computation can be easily extended to
general N and k ≥ N

3 ; see exercise 13.4.)
Let the clock of p run faster than the clock of q. Suppose a synchronization takes

place at real time τ , in which r sends Cp(τ) + δ to p, and Cq(τ) − δ to q. Since r
reports a clock value to p that is within δ of p’s local clock value, and since p receives
only one other clock value (from q), p cannot recognize that r is Byzantine. Likewise,
q cannot recognize that r is Byzantine. So p and q have to stay within range δ of the
value reported by r, meaning that p cannot decrease and q cannot increase its clock
value.

By repeating this scenario at each synchronization round, the clock values of p
and q get further and further apart. So eventually, p will have to choose whether its
clock stays within range δ of q’s or r’s clock, without being able to determine which
of the two processes is Byzantine. And likewise for q. ��

If at most k < N
3 processes are Byzantine, then clock synchronization can be

achieved. To simplify the forthcoming presentation of Byzantine clock synchroniza-
tion, we take the bound dmax on network latency to be zero. (In a sense, we assume
that dmax is negligible compared to δ.)

In the Mahaney-Schneider k-Byzantine clock synchronization algorithm, pro-
cesses regularly communicate their clock values to each other, and each process takes
the average of all these clock values, whereby clock values that are provably from
Byzantine processes are discarded. It is assumed that at the start of a clock synchro-
nization, the local clocks have precision δ > 0. This algorithm achieves that after a
clock synchronization, the local clocks have precision 2

3δ.
The Mahaney-Schneider synchronizer proceeds in synchronization rounds, in

which each correct process:

• collects the clock values of all processes,
• discards those reported values τ for which fewer than N − k processes report a

value in the interval [τ − δ, τ + δ] (they are from Byzantine processes),
• replaces all discarded and nonreceived values by an accepted value, and
• takes the average of these N values as its new clock value.

Theorem 13.4 The Mahaney-Schneider synchronizer is a k-Byzantine clock syn-
chronization algorithm for any k < N

3 .

13.3 Lamport-Shostak-Pease broadcast algorithm 127

Proof. First we argue that if in some synchronization round, values ap and aq are
accepted at correct processes p and q, respectively, then

|ap − aq| ≤ 2δ.

In this synchronization round, at least N − k processes reported a value in [ap −
δ, ap + δ] to p, and at least N − k processes reported a value in [aq − δ, aq + δ] to q.
Since N − 2k > k, this implies that at least one correct process r reported a value in
[ap − δ, ap + δ] to p, and in [aq − δ, aq + δ] to q. Since r reports the same value to p
and q, it follows that |ap − aq| ≤ 2δ.

In some synchronization round, let the correct processes p and q accept from (or
assign to) each process r a value apr and aqr, respectively. Then p and q compute as
new clock value 1

N (
∑

processes r apr) and 1
N (

∑
processes r aqr), respectively.

By the argument above, for all processes r, |apr − aqr| ≤ 2δ. And apr = aqr for
all correct processes r. Hence,

| 1
N

(
∑

processes r

apr)− 1

N
(

∑
processes r

aqr)| ≤ 1

N
k2δ <

2

3
δ. ��

In the proof of theorem 13.4 it was shown that after a synchronization round,
the clocks at correct processes have a precision smaller than 2

3δ. If the local clocks
have been synchronized at time τ , then due to ρ-bounded drift of local clocks, if no
synchronization takes place in the time interval [τ, τ +R]:

|Cp(τ +R)− Cq(τ +R)| <
2

3
δ + (ρ− 1

ρ
)R <

2

3
δ + ρR.

So to achieve precision δ, a synchronization of local clocks should be performed
every δ

3ρ time units.

13.3 Lamport-Shostak-Pease broadcast algorithm

To cope with crash failures, failure detectors were introduced in section 12.3 to try
to detect crashed processes. The two implementations of failure detectors that we
discussed were both based on the absence of messages from a crashed process over
a certain period of time. Detecting Byzantine processes is much more complicated,
since they can keep on sending messages, and in general it is far from easy to de-
termine that a process is performing events that are not in line with the specification
of the distributed algorithm that is being executed. Therefore, to cope with Byzan-
tine processes, another strategy is followed: the network must be transformed into a
synchronous system.

In this section and the next we consider a variation on the Byzantine consensus
problem, called Byzantine broadcast, in the setting of synchronous networks. One
process, called the general, randomly chooses an initial value 0 or 1. The other pro-
cesses, called lieutenants, know who is the general. In each execution of a (binary)
Byzantine broadcast algorithm, the requirements termination and agreement must be
satisfied, together with a variation on validity.

128 13 Byzantine Failures

• Dependence: if the general is correct, then it decides for its own initial value.

A k-Byzantine broadcast algorithm can cope with at most k Byzantine processes. It
will come as no surprise that for k ≥ N

3 such an algorithm does not exist, even if we
have a synchronous network.

Theorem 13.5 Let k ≥ N
3 . There is no k-Byzantine broadcast algorithm for syn-

chronous networks.

Proof. Suppose toward a contradiction that a k-Byzantine broadcast algorithm for
synchronous networks does exist. Divide the processes into three disjoint sets S, T ,
and U , with each at most k elements. Let the general be in S. We consider three
different scenarios, which are depicted here.

0
Byzantine

T U

0 0 0 0

0

1

S

T U

0 0 1 1

0

1

S Byzantine

Byzantine

S

U

1 1 1 1

1T

In the first scenario at the left, the processes in U are Byzantine, and the general
starts with the value 0. The processes in S and T propagate 0. Moreover, all processes
in S ∪ T should decide for 0. The Byzantine processes in U , however, propagate 1
to the processes in T .

In the second scenario in the middle, the processes in T are Byzantine, and the
general starts with the value 1. The processes in S and U propagate 1. Moreover,
all processes in S ∪ U should decide for 1. The Byzantine processes in T , however,
propagate 0 to the processes in U .

In the third scenario at the right, the processes in S, including the general, are
Byzantine. The processes in S propagate 0 to T , and as a result the processes in T do
so too. Likewise, the processes in S propagate 1 to U , and as a result the processes in
U do so too. Note that the inputs of the processes in T agree with the first scenario,
so they all decide for 0. By contrast, the inputs of the processes in U agree with the
second scenario, so they all decide for 1. This is a contradiction. ��

The Lamport-Shostak-Pease broadcast algorithm for synchronous networks is
a k-Byzantine broadcast algorithm for any k < N

3 . Since the algorithm contains
recursive calls to itself, we denote it with Broadcastg(N, k), where g denotes the
general. Let majority be a (deterministic) function that maps each multiset (or bag)
of elements from {0, 1} to either 0 or 1; in a multiset, the same element can occur
multiple times. If more than half of the elements in a multiset M are equal to b, then
majority(M) = b.

The algorithm Broadcastg(N, k) proceeds in k + 1 pulses.

• Pulse 1: the general g, if correct, broadcasts its value, and decides for its value.

13.3 Lamport-Shostak-Pease broadcast algorithm 129

Each correct lieutenant q acts as follows. If q receives a value b from g, then it
sets its value to b; else it sets its value to 0.

– If k = 0, then q decides for its value.
– If k > 0, then for every lieutenant p, q takes part in Broadcastp(N − 1, k − 1),

starting in pulse 2.
• Pulse k + 1 (if k > 0): each correct lieutenant q has, for every lieutenant p,

computed a value in Broadcastp(N − 1, k − 1); it stores these N − 1 values
in a multiset Decisionsq . Finally, q sets its value to majority(Decisionsq), and
decides for this value.

Note that if the general is correct, then it can decide immediately, because by the
dependence requirement all correct lieutenants are supposed to decide for the gen-
eral’s value. If k = 0, then the general is certainly correct, so that the lieutenants can
also decide immediately, for the received value. However, if k > 0, then the lieu-
tenants must count with the fact that the general may be Byzantine. Therefore, each
correct lieutenant p starts a recursive call Broadcastp(N − 1, k− 1), reminiscent of
the echo principle in the Bracha-Toueg Byzantine consensus algorithm; the general
is excluded from this calls. This gives rise to a cascade of recursive calls, because if
k > 1, then each of these calls may start another N − 2 recursive calls, and so on.

We informally argue the correctness of the Lamport-Shostak-Pease broadcast al-
gorithm; a more formal proof will be given at the end of this section. In case the
general is correct, each recursive call Broadcastp(N − 1, k − 1) with p correct is
guaranteed to yield the general’s value at all correct lieutenants. Since a majority
of the lieutenants is correct, by definition of the majority function, all correct lieu-
tenants will decide for the general’s value. On the other hand, in case the general is
Byzantine, by induction on k, all correct lieutenants are guaranteed to compute the
same values in the N − 1 recursive calls Broadcastp(N − 1, k − 1). So due to the
deterministic nature of the majority function, in pulse k + 1 all correct lieutenants
will compute and decide for the same value in Broadcastg(N, k).

We consider two examples of the Lamport-Shostak-Pease broadcast algorithm:
one where the general is correct and one where the general is Byzantine.

Example 13.3 Consider a complete network with four processes g, p, q, r, and k =
1. Suppose that the general g and lieutenants p, q are correct, while lieutenant r
is Byzantine. We consider one possible computation of the Lamport-Shostak-Pease
broadcast algorithm Broadcastg(4, 1) on this network.

In pulse 1, g broadcasts and decides for 1. So after pulse 1, p and q carry the
value 1. These lieutenants build, by the three recursive calls Broadcasts(3, 0) with
s ∈ {p, q, r}, a multiset {1, 1, b}, where b can be distinct for p and q, as they may
compute different values in Broadcastr(3, 0). Since the majority of values in these
multisets equals 1, both p and q decide for 1.

Example 13.4 Consider a complete network with N = 7 and k = 2. Suppose that
the general g and one lieutenant r are Byzantine. We consider one possible compu-
tation of the Lamport-Shostak-Pease broadcast algorithm Broadcastg(7, 2) on this
network.

130 13 Byzantine Failures

In pulse 1, the general sends 0 to three correct lieutenants, and 1 to the other two
correct lieutenants. The five correct lieutenants all build, by the six recursive calls
Broadcasts(6, 1), the same multiset M = {0, 0, 0, 1, 1, b}, for some b ∈ {0, 1}.
Namely, even in Broadcastr(6, 1), all correct lieutenants are guaranteed to compute
the same value b. So they all decide for majority(M).

For instance, in Broadcastr(6, 1) the Byzantine lieutenant r could send 0 to two
correct lieutenants, and 1 to the other three correct lieutenants. Then the five correct
lieutenants all build, by five recursive calls Broadcasts(5, 0), the same multiset M =
{0, 0, 1, 1, 1}. So in this case b = major({0, 0, 1, 1, 1}) = 1.

Theorem 13.6 The Lamport-Shostak-Pease broadcast algorithm is a k-Byzantine
broadcast algorithm for any k < N

3 .

Proof. Let f be the number of Byzantine processes in the network. First we prove
that if the general g is correct, and f < N−k

2 , then in Broadcastg(N, k) all correct
processes decide for g’s value. This holds even if f > k.

We prove this claim by induction on k. The base case k = 0 is trivial, because g
is assumed to be correct, so all correct processes decide for g’s value in pulse 1. We
now consider the inductive case k > 0. Since g is assumed to be correct, in pulse 1,
all correct lieutenants set their value to g’s value. By assumption, f < (N−1)−(k−1)

2 ,
so by induction, for all correct lieutenants q, in Broadcastq(N − 1, k − 1) the value
of q, that is, g’s value is computed. Since a majority of the lieutenants is correct
(f < N−1

2), in pulse k+1, a majority of the values that a correct lieutenant computes
in the recursive calls Broadcastq(N − 1, k − 1) equal g’s value. So in pulse k + 1,
each correct lieutenant computes and decides for g’s value.

Now we prove that the Lamport-Shostak-Pease broadcast algorithm is a k-
Byzantine broadcast algorithm for any k < N

3 , again by induction on k. The case
where g is correct follows immediately from the statement proved above, together
with the fact that f < N

3 < N−k
2 . Therefore, we can assume that g is Byzantine (so

k > 0). Then at most k − 1 lieutenants are Byzantine. Since k − 1 < N−1
3 , by in-

duction, all correct lieutenants compute the same value in Broadcastp(N −1, k−1)
for every lieutenant p. Hence, all correct lieutenants compute the same multiset M in
pulse k + 1. So all correct lieutenants decide for the same value majority(M). ��

13.4 Lamport-Shostak-Pease authentication algorithm

A public-key cryptographic system consists of a finite message domain M and, for
each process q, functions Sq, Pq : M → M with Sq(Pq(m)) = Pq(Sq(m)) =
m for all m ∈ M. The key Sq is kept secret by q, while Pq is made public. The
underlying assumption is that computing Sq from Pq is very expensive. A well-
known and widely used public-key cryptographic system is RSA.

If a process p wants to send a secret message m to a process q, then p can send
Pq(m) to q. Because only q knows the secret key Sq that is needed to decrypt this
message. Furthermore, if p wants to send a signed message m to q, such that other

13.4 Lamport-Shostak-Pease authentication algorithm 131

processes cannot fraudulently sign their messages with p’s signature, then p can send
〈m,Sp(m)〉 to q. Because only p can compute Sp(m), and q can obtain p’s public
key Pp, apply this to the signature Sp(m), and check whether the result equals the
message m.

The Lamport-Shostak-Pease authentication algorithm for synchronous systems
uses this signature principle of public-key cryptographic systems in such a way that
the Byzantine processes cannot lie about the values they have received. It is a correct
and terminating k-Byzantine broadcast algorithm for any k. Each process p has a
secret key Sp and a public key Pp. We step away from binary Byzantine broadcast:
the correct processes must uniformly pick a value from a large domain of possible
values. The reason is that on a small domain (in case of binary consensus consisting
of only two values), computing Sq from Pq is easy. It is assumed that processes q �= p
cannot guess values Sp(v) without acquiring extra knowledge about Sp.

The Lamport-Shostak-Pease authentication algorithm proceeds in k + 1 pulses:

• In pulse 1, the general, if correct, broadcasts 〈valueg, (Sg(valueg), g)〉, and de-
cides for valueg .

• If in a pulse i ≤ k + 1 a correct lieutenant q receives a message 〈v, (σ1, p1) :
· · · : (σi, pi)〉 that is valid, meaning that
– p1 = g,
– p1, . . . , pi, q are distinct, and
– Ppk

(σk) = v for all k = 1, . . . , i,
then q includes v in the set Valuesq .
If i ≤ k, then in pulse i+ 1, q sends to all other lieutenants the message

〈v, (σ1, p1) : · · · : (σi, pi) : (Sq(v), q)〉.

• After pulse k+1, each correct lieutenant q decides for v if Valuesq is a singleton
{v}, or 0 otherwise. (In the latter case, the general is Byzantine.)

The second part of a message is a list of signatures. If a correct lieutenant q
receives a valid message, meaning that the signatories are distinct, include the general
and not the receiver, and each signatory p has added the correct signature Sp(v),
where v is the value contained in the first part of the message, then q takes v on
board as possible value, adds its signature to the list of signatures, and broadcasts the
message. A key observation is that each such message in pulse k+1 contains a list of
k+1 signatures, so at least one signature from a correct process. This means that no
later than pulse k + 1, every lieutenant will have received a valid message with this
value. As a result, after pulse k + 1 all correct lieutenants have computed the same
set Values . So they all decide for the same value. And if the general is correct, then
these sets are guaranteed to only contain valueg , because then Byzantine processes
cannot forge signatures by the general for other values.

Example 13.5 Consider a complete network of four processes g, p, q, r, and let
k = 2. Suppose that the general g and lieutenant r are Byzantine. We consider one
possible computation of the Lamport-Shostak-Pease authentication algorithm.

132 13 Byzantine Failures

– In pulse 1, g sends 〈0, (Sg(0), g)〉 to p and q, and 〈1, (Sg(1), g)〉 to r. Then
Valuesp and Valuesq become {0}.

– In pulse 2, p and q broadcast 〈0, (Sg(0), g) : (Sp(0), p)〉 and 〈0, (Sg(0), g) :
(Sq(0), q)〉, respectively. And r sends 〈1, (Sg(1), g) : (Sr(1), r)〉 to only q. Then
Valuesp remains {0}, while Valuesq becomes {0, 1}.

– In pulse 3, q broadcasts 〈1, (Sg(1), g) : (Sr(1), r) : (Sq(1), q)〉. Then Valuesp
becomes {0, 1}.

– After pulse 3, p and q both decide for 0, because Valuesp and Valuesq contain
two elements.

Theorem 13.7 The authentication algorithm from Lamport-Shostak-Pease is a k-
Byzantine broadcast algorithm for any k.

Proof. If the general is correct, then Byzantine processes will not get an opportunity
to forge a signature for a value different from valueg on behalf of the general. So
owing to authentication, correct lieutenants will only add valueg to their set Values .
Hence, all processes will decide for valueg .

Suppose a correct lieutenant q receives a valid message 〈v, �〉 in a pulse i =
1, . . . , k + 1. We distinguish two cases.

• i ≤ k: then in the next pulse, q broadcasts a message that will make all correct
lieutenants add v to their set Values .

• i = k + 1: since the list � of signatures has length k + 1, it contains a correct
process p. Then p received a valid message 〈v, �′〉 in a pulse j ≤ k. In pulse
j + 1, p has broadcast a message that makes all correct lieutenants add v to their
set Values .

So after pulse k + 1, Valuesq is the same for all correct lieutenants q. Hence, after
pulse k + 1 they all decide for the same value. ��

The Dolev-Strong optimization minimizes the number of required messages.
This optimization lets each correct lieutenant broadcast at most two messages, with
different values. When it has broadcast two different values, all correct lieutenants
are certain to compute a set Values with at least two values, so that all correct lieu-
tenants will decide for 0.

Bibliographical notes

The Bracha-Toueg Byzantine consensus algorithm stems from [11]. The Mahaney-
Schneider synchronizer originates from [52]. The Lamport-Shostak-Pease broadcast
and authentication algorithms were proposed in [47]. The Dolev-Strong optimization
is due to [28].

Exercises 133

Exercises

Exercise 13.1 Consider a complete network of four processes, in which one process
is Byzantine. Apply the Bracha-Toueg 1-Byzantine consensus algorithm, where ini-
tially one correct process chooses the value 0 and two correct processes the value 1.
Give a computation in which all correct processes decide for 0.

Exercise 13.2 [76] In the Bracha-Toueg k-Byzantine consensus algorithm, suppose
that more than N+k

2 correct processes initially choose the value b. Explain why the
correct processes will eventually decide for b.

Exercise 13.3 Given three correct processes p0, p1, p2 and a Byzantine process q.
Let the local clocks of p0 and p1 run half as fast as real time, and let the local clock
of p2 run twice as fast as real time. Consider the Mahaney-Schneider synchronizer
for some precision δ > 0, whereby it is assumed that dmax = 0 (that is, messages
are communicated instantaneously).

(a) What is the smallest ρ > 1 for which the clocks of p0, p1, p2 are all ρ-bounded?
(b) Suppose that at real time τ , the clocks of p0 and p1 are at τ− δ

3 , while the clock at
p2 is at τ+ δ

3 . Let p0, p1, p2 synchronize their clocks at real time τ+ δ
3ρ (with the

ρ from part (a)). Show that whatever input q gives at this synchronization point,
the clocks of p0, p1, p2 are not more than 2δ

3 apart.
(c) Repeat the exercise in part (b), but now leaving out p0. Show that in this case

after synchronization at real time τ + δ
3ρ , the clocks of p1 and p2 can be more

than 2δ
3 apart.

Exercise 13.4 Argue the impossibility of k-Byzantine clock synchronization for
general N and k ≥ N

3 .

Exercise 13.5 The k-Byzantine synchronizer of Lamport and Melliar-Smith differs
from the Mahaney-Schneider synchronizer in one aspect: a correct process p accepts
a local clock value of another process q if it differs no more than δ from its own clock
value, at the moment of synchronization.

Explain why that synchronizer has precision 3k
N δ (versus precision 2k

N δ of the
Mahaney-Schneider synchronizer).

Exercise 13.6 Explain how the Mahaney-Schneider synchronizer must be adapted
in case dmax > 0.

Exercise 13.7 Let N = 5 and k = 1, and let the general g be Byzantine. Suppose
that in pulse 1, g sends the value 1 to two lieutenants, and the value 0 to the other
two lieutenants. Give a computation of Broadcastg(5, 1) (including a definition of
the majority function) such that all lieutenants decide for 0.

134 13 Byzantine Failures

Exercise 13.8 Let N = 7 and k = 2, and let the general g and one lieutenant be
Byzantine. Give a computation of Broadcastg(7, 2) (and its subcalls) in which all
correct lieutenants decide for majority({0, 0, 0, 1, 1, 1}).

Exercise 13.9 [76] Determine the worst-case message complexity of the correct pro-
cesses in Broadcastg(N, k).

Exercise 13.10 Apply the Lamport-Shostak-Pease authentication algorithm to a
complete network of five processes. Let three of the processes be Byzantine. Give
a computation in which the two correct processes would decide for different values
at the end of pulse 3, but decide for the same value in pulse 4.

Exercise 13.11 Let k ≥ N − 1. Explain why the Lamport-Shostak-Pease authen-
tication algorithm can then be adapted by letting it already terminate at the end of
pulse N − 1.

Exercise 13.12 Determine the worst-case message complexity of the correct pro-
cesses in the Lamport-Shostak-Pease authentication algorithm, taking into account
the Dolev-Strong optimization.

14

Mutual Exclusion

Mutual exclusion in distributed systems aims to serialize access to a shared resource,
such as updating a database or sending a control signal to an I/O device. Although
multiple processes may want to access the resource concurrently, at any moment in
time at most one process should be privileged, meaning that it is allowed access. A
process that becomes privileged is said to enter its critical section, which is a block
of source code where the process needs access to the resource. When a process gives
up the privilege, it is said to exit its critical section. Mutual exclusion algorithms are
supposed to satisfy the following two properties, in each execution:

• Mutual exclusion: in every configuration, at most one process is privileged.
• Starvation-freeness: if a process p tries to enter its critical section, and no process

remains privileged forever, then p will eventually enter its critical section.

In a message-passing setting, mutual exclusion algorithms are generally based
on one of the following three paradigms.

• A logical clock: requests for entering a critical section are prioritized by means
of logical time stamps.

• Token passing: the process holding the token is privileged.
• Quorums: to become privileged, a process needs the permission from a quorum

of processes. Each pair of quorums should have a nonempty intersection.

We will discuss one mutual exclusion algorithm for each of these categories.

14.1 Ricart-Agrawala algorithm

The Ricart-Agrawala mutual exclusion algorithm uses a logical clock (see chapter
2). For simplicity, we assume that the network topology is complete.

When a process pi (where i is its ID) wants to enter its critical section, it sends
the message 〈request, tsi, i〉 to all other processes, with tsi its logical time stamp.
The second argument of this message, the process ID, is meant to break ties between
two competing processes that send concurrent requests with the same logical time

136 14 Mutual Exclusion

stamp; then the request from the process with the lowest ID has the highest priority.
When another process pj receives this request, it sends permission to pi as soon as:

• pj is not privileged, and
• pj does not have a pending request with a logical time stamp tsj where (tsj , j) <

(tsi, i) (with respect to the lexicographical order).

pi enters its critical section when it has received permission from all other processes.
Actually, the Ricart-Agrawala algorithm does not require a full-blown logical

clock. It suffices if only requests are taken into account. That is, if a process receives
a request with time stamp t, then it increases its clock value to t+ 1.

We consider two examples, both with N = 2. Let clocks start at time 1.

Example 14.1 p1 sends 〈request, 1, 1〉 to p0. At reception of this request, p0 sends
permission to p1, and sets its clock value to 2. Next, p0 sends 〈request, 2, 0〉 to p1.
When p1 receives this message, it does not send permission to p0, because (1, 1) <
(2, 0); it sets its clock value to 3. Finally, p1 receives permission from p0, and enters
its critical section.

Example 14.2 p1 sends 〈request, 1, 1〉 to p0, and p0 sends 〈request, 1, 0〉 to p1.
When p0 receives the request from p1, it does not send permission to p1, because
(1, 0) < (1, 1). When p1 receives the request from p0, it does send permission to p0,
because (1, 0) < (1, 1). Both p0 and p1 set their clock value to 2. Finally, p0 receives
permission from p1, and enters its critical section.

We argue that the Ricart-Agrawala algorithm guarantees mutual exclusion. Sup-
pose a process p wants to enter its critical section and sends requests to all other
processes. When another process q sends permission to p, q is not privileged; and
since q’s pending or future request is larger than p’s request, q will not get permis-
sion from p to enter its critical section until after p has entered and left its critical
section. The Ricart-Agrawala algorithm is also starvation-free, because each request
will eventually become the smallest request in the network.

A drawback of the Ricart-Agrawala algorithm is the high message overhead, be-
cause requests must be sent to all other processes. The Carvalho-Roucairol optimiza-
tion reduces this message overhead. Suppose a process p entered its critical section
before and wants to enter it again. Then p only needs to send requests to processes
that p has sent permission to since the last exit from its critical section. Because as
long as another process q has not obtained p’s permission, q cannot enter its critical
section (even when the Carvalho-Roucairol optimization is being applied), because
q has previously given permission to p. If such a process q sends a request to p while
p is waiting for permissions, and q’s request is smaller than p’s outstanding request,
then p sends both permission and a request to q.

14.2 Raymond’s algorithm 137

14.2 Raymond’s algorithm

Raymond’s mutual exclusion algorithm is based on token passing; only the process
holding the token may be privileged. It assumes an undirected network, and starts
from a spanning tree in this network; the root of this sink tree holds the token.

Each process maintains a FIFO queue, which can contain IDs of its children in
the sink tree, and its own ID. Initially, this queue is empty. A process maintains its
queue as follows:

• When a nonroot wants to enter its critical section, it adds its ID to its own queue.
• Each time a nonroot gets a new head at its (nonempty) queue, it sends a request

for the token to its parent in the sink tree.
• When a process receives a request for the token from a child, it adds the ID of

this child at the end of its queue.
• When the root has left its critical section and its queue is or becomes nonempty,

it sends the token to the process q at the head of its queue, makes q its parent, and
removes q’s ID from the head of its queue.

In the special case that the root wants to enter its critical section again and its queue
is empty, it can become privileged straightaway.

Let a nonroot p get the token from its parent, and let the ID of the process q be at
the head of p’s queue.

• If p �= q, then p sends the token to q, and makes q its parent.
• If p = q, then p becomes the root; that is, it has no parent and is privileged.

In both cases, p removes q’s ID from the head of its queue.

Example 14.3 We consider one possible computation of Raymond’s algorithm, on
an undirected network of five processes. In every picture, the gray process is the root.

p3

p5 p1

p2 p8

p3

p5

p2

p1

p8 8

1

8

Initially, in the picture at the left, p3 is the root, and in its critical section. Next, in the
picture at the right, the following has happened. Since p8 wants to enter its critical
section, it placed its own ID in its queue. Since this was a new head of its queue, p8
sent a request for the token to its parent p1. As a result, p1 also placed the ID 8 in its
queue. Since this was a new head of its queue, p1 sent a request for the token to its
parent p3. As a result, p3 placed the ID 1 in its queue.

138 14 Mutual Exclusion

p3

p5 p1

p2 p8

p3

p5

p2

p1

p8 8

1, 5

5 8

1, 5

8

5

2

8, 2

In the picture at the left, p5 wants to enter its critical section, so it placed its own ID
in its queue. Since this was a new head of its queue, p5 sent a request for the token
to its parent p3. As a result, p3 also placed the ID 5 in its queue. In the picture at the
right, p2 wants to enter its critical section, so it placed its own ID in its queue. Since
this was a new head of its queue, p2 sent a request for the token to its parent p1. As
a result, p1 also placed the ID 2 in its queue.

p3

p5 p1

p2 p8

p3

p5

p2

p1

p8 1

5

5 8, 2, 3

5

2, 3

8

5

22

In the picture at the left, p3 exited its critical section. Since the ID 1 was the head of
its queue, it sent the token to p1, made p1 its parent, and removed 1 from its queue.
Then 5 became the new head of its queue, so p3 sent a request for the token to its
parent p1. When p1 received the token, it became the root. Moreover, the request
from p3 made p1 add the ID 3 to its queue. In the picture at the right, since the ID
8 was the head of its queue, p1 forwarded the token to p8, made p8 its parent, and
removed 8 from its queue. Then 2 became the new head of its queue, so p1 sent a
request for the token to its parent p8. When p8 received the token, it became the root,
removed 8 from its queue, and entered its critical section. Moreover, the request from
p1 made p8 add the ID 1 to its queue.

p3

p5 p1

p2 p8

p3

p5

p2

p1

p8

5

5 2, 3

5

35

12

14.2 Raymond’s algorithm 139

In the picture at the left, p8 exited its critical section. Since the ID 1 was the head of
its queue, it sent the token to p1, made p1 its parent, and removed 1 from its queue.
When p1 received the token, it became the root. In the picture at the right, since the
ID 2 was the head of its queue, p1 forwarded the token to p2, made p2 its parent,
and removed 2 from its queue. Then 3 became the new head of its queue, so p1 sent
a request for the token to its parent p2. When p2 received the token, it became the
root, removed 2 from its queue, and entered its critical section. Moreover, the request
from p1 made p2 add the ID 1 to its queue.

p3

p5 p1

p2 p8

p3

p5

p2

p1

p8

5

5 3

5

5

In the picture at the left, p2 exited its critical section. Since the ID 1 was the head of
its queue, it sent the token to p1, made p1 its parent, and removed 1 from its queue.
When p1 received the token, it became the root. In the picture at the right, since the
ID 3 was the head of its queue, p1 forwarded the token to p3, made p3 its parent, and
removed 3 from its queue. When p3 received the token, it became the root.

p3

p5 p1

p2 p8

In the final picture, since the ID 5 was the head of its queue, p3 sent the token to p5,
made p5 its parent, and removed 5 from its queue. When p5 received the token, it
became the root, removed 5 from its queue, and entered its critical section.

Whenever a process holds the token, it is easy to see that it is the root of the sink
tree. Raymond’s algorithm clearly provides mutual exclusion, because at all times
at most one process holds the token. Raymond’s algorithm also provides starvation-
freeness, because eventually each request in a queue moves to the head of this queue,
and a chain of requests never contains a cycle.

140 14 Mutual Exclusion

14.3 Agrawal-El Abbadi algorithm

In the Agrawal-El Abbadi mutual exclusion algorithm, a process must obtain permis-
sion from a quorum of processes to enter its critical section. The crucial property of
quorums is that each pair of quorums has a nonempty intersection. This guarantees
mutual exclusion. The key of the Agrawal-El Abbadi algorithm is how quorums are
defined. A strong point of this algorithm is that it can cope with processes that are
not responsive.

For simplicity, we assume that the network topology is complete and that N =
2k+1 − 1 for some k > 0. The processes are structured in a binary tree of depth k. A
quorum consists of all processes on a path in this binary tree from the root to a leaf.
If a nonleaf r is unresponsive, then instead of asking permission from p, permission
can be asked from all processes on two paths: from each child of r to some leaf. We
note that a process may have to ask permission from itself.

To be more precise, a process p that wants to enter its critical section, places the
root of the tree in a queue. Then it repeatedly tries to get permission from the pro-
cess r at the head of its queue. If successful, r is removed from p’s queue; in case
r is a nonleaf, one of the two children of r is appended at the end of p’s queue. If a
nonleaf r is found to be unresponsive, then r is removed from p’s queue, and both
of its children are appended at the end of the queue, in a fixed order, to avoid dead-
locks; for instance, the left child is always placed before the right node. Otherwise,
two processes p and q could find that a nonleaf r is unresponsive, after which p and
q might obtain permission from the left and right child of r, respectively, leading to
a deadlock. If a leaf r is found to be unresponsive, p’s attempt to become privileged
must be aborted. When p’s queue becomes empty, it has received permission from
a quorum of processes, so that it can enter its critical section. After exiting its criti-
cal section, p informs all processes in the quorum that their permission to p can be
withdrawn.

If processes may crash, a complete and strongly accurate failure detector is re-
quired, and a process withdraws its permission if it detects that the process to which
it has given permission has crashed.

Example 14.4 Let N = 7, and suppose the processes are structured in a binary tree
as follows.

p9

p3 p4

p8 p1 p0 p5

Some possible quorums are:

14.3 Agrawal-El Abbadi algorithm 141

• {p9, p3, p8}, {p9, p3, p1}, {p9, p4, p0}, and {p9, p4, p5}.
• If p9 is not responding: {p3, p8, p4, p0}, {p3, p1, p4, p0}, {p3, p8, p4, p5}, and

{p3, p1, p4, p5}.
• If p3 is not responding: {p9, p8, p1}.
• If p4 is not responding: {p9, p0, p5}.

For more possible quorums in this network, see exercise 14.8.
Suppose that two processes p and q concurrently want to enter their critical sec-

tion; we consider one possible computation, with regard to the binary tree above.
First, p obtains permission from p9, and now it wants to obtain permission from p4.
Next, p9 crashes, which is observed by q, who now wants to obtain permission from
p3 and p4. Let q obtain permission from p3, after which it appends p8 at the end of
its queue. Next, q obtains permission from p4, after which it appends p5 at the end
of its queue. Next, p4 crashes, which is observed by p, who now wants to obtain
permission from p0 and p5. Next, q obtains permission from p8, and now it wants to
obtain permission from p5. Finally, p obtains permission from both p0 and p5, and
enters its critical section. It has obtained permission from the quorum {p9, p0, p5}.

We argue, by induction on the depth of the binary tree, that each pair of quorums
Q and Q′ have a nonempty intersection. This implies that the Agrawal-El Abbadi
algorithm guarantees mutual exclusion. A quorum that includes the root contains
a quorum in one of the subtrees below the root, while a quorum without the root
contains a quorum in both subtrees below the root. If Q and Q′ both contain the root,
then we are done, because the root is in their intersection. If they both do not contain
the root, then by induction they have elements in common in the two subtrees below
the root. Finally, if Q contains the root while Q′ does not, then Q contains a quorum
in one of the subtrees below the root, and Q′ also contains a quorum in this subtree;
so by induction, Q and Q′ have an element in common in this subtree.

The Agrawal-El Abbadi algorithm is deadlock-free, if all leaves are responsive.
This property depends crucially on the strict queue management. Suppose that in case
of an unresponsive process, its left child is placed before its right child in the queue
of a process that wants to become privileged. Consider the following total order <
on processes, based on their position in the binary tree: p < q if either p occurs at
smaller depth than q in the binary tree, or p and q occur at the same depth and q is
placed more to the right than p in the binary tree. Then a process which has obtained
permission from a process r, never needs permission from a process q < r to enter its
critical section. This guarantees that in case all leaves are responsive, some process
will always become privileged. Starvation may happen if a process infinitely often
fails to get permission from a process in the binary tree, but this could be easily
resolved.

142 14 Mutual Exclusion

Bibliographical notes

The Ricart-Agrawala algorithm was presented in [68], and the Carvalho-Roucairol
optimization in [14]. Raymond’s algorithm originates from [67], and the Agrawal-El
Abbadi algorithm from [2].

Exercises

Exercise 14.1 Say for both mutual exclusion and starvation-freeness whether this is
a safety or liveness property.

Exercise 14.2 Explain in detail why the Carvalho-Roucairol optimization of the
Ricart-Agrawala algorithm is correct.

Exercise 14.3 Show that if processes could apply the Carvalho-Roucairol optimiza-
tion from the start (instead of after a first entry of their critical section), then the
resulting mutual exclusion algorithm would be incorrect.

Exercise 14.4 The logical clock values in the Ricart-Agrawala algorithm are un-
bounded. Adapt the algorithm such that the range of these values becomes finite
(using modulo arithmetic).

Exercise 14.5 Run Raymond’s algorithm on the network from example 14.3. Ini-
tially, process p3 holds the token, and all buffers are empty. Give a computation
(including all messages) in which first p8, then p2, and finally p5 requests the token,
but they receive the token in the opposite order.

Exercise 14.6 Argue that in Raymond’s algorithm, each request to enter a critical
section gives rise to at most 2D messages.

Exercise 14.7 Explain in detail why Raymond’s algorithm is starvation-free.

Exercise 14.8 Consider the Agrawal-El Abbadi algorithm, with seven processes
structured in a binary tree as in example 14.4. What are the quorums if p9, p4
crashed? And if p9, p3, p4 crashed? And if p9, p3, p8 crashed?

Exercise 14.9 In the Agrawal-El Abbadi algorithm, what is the minimum and the
maximum size of a quorum (in terms of N)?

Exercise 14.10 Prove that for each pair of quorums Q and Q′ in the Agrawal-El
Abbadi algorithm, Q ⊆ Q′ implies Q = Q′.

Exercise 14.11 Adapt the Agrawal-El Abbadi algorithm to make it starvation-free,
if all leaves in the binary tree are responsive.

II

Shared Memory

15

Preliminaries

In a shared-memory framework, a number of (hardware) processors communicate
with main memory, and with the other processors, over a bus. Processors and main
memory are snooping, meaning that they are listening for messages that are broadcast
over the bus.

The processes (or threads) are sequential programs that can run on a processor;
at any time at most one process is running on each processor. Processes communi-
cate with each other, asynchronously, via variables in main memory, called registers
(or fields). We distinguish single-reader registers, which are fields that can be read
by only one process, and multi-reader registers, which can be read by all processes.
Likewise we distinguish single-writer and multi-writer registers. Unless stated dif-
ferently, it will be assumed that registers are multi-reader.

An event at a process typically consists of a read or write to a register. Read-
modify-write operations, however, read a memory location and write a new value
into it in one atomic step; this new value may be computed on the basis of the value
returned by the read. Atomicity is obtained by keeping a lock on the bus from the
moment the value is read until the moment the new value is written. Typical examples
of read-modify-write operations are:

• test-and -set , which writes true in a Boolean register, and returns the previous
value of the register.

• get-and -increment , which increases the value of an integer register by one, and
returns the previous value of the register.

• get-and -set(new), which writes the value new in a register, and returns the pre-
vious value of the register.

• compare-and -set(old ,new), which checks whether the value of the register
equals old, and if so, overwrites it with the value new; a Boolean value is re-
turned to signal whether the new value was actually written.

We note that a software crash is always a consequence of a hardware instruction
(for example, a program counter is set to an incorrect address). Therefore, processes
do not crash during a read-modify-write operation; this means that, in the absence of
a hardware crash, the lock on the bus is always eventually released.

146 15 Preliminaries

Mutual exclusion is of the essence in a shared-memory framework, to avoid si-
multaneous use of, for instance, a block of memory. A common way to achieve this
is by means of locks; to become privileged, one must obtain the lock, and at any
time at most one process can hold the lock. The three mutual exclusion algorithms
presented in chapter 14 basically all use this principle. In a setting with locks, we
distinguish two kinds of progress properties for mutual exclusion algorithms, under
the assumption that no process holds the lock forever. An algorithm is livelock-free if
some process trying to get the lock eventually succeeds. It is starvation-free if every
process trying to get the lock eventually succeeds.

Sometimes we will take into account caches, which are relatively small memory
units, local to a processor, to store copies of data from main memory that are fre-
quently used. Access to main memory is slow compared to cache access. Changes
to data values are therefore accumulated in the local cache, and written back to main
memory when needed: to make place in the cache, when another process wants the
value, or at some memory barrier which enforces that writes are performed. When
a process takes a cache miss, meaning that it cannot find some data in its cache, the
required data is fetched from main memory, or provided by a snooping processor.

We assume that some cache coherence protocol is in place to maintain the con-
sistency of the data in the local caches. In the presence of caches, typically synchro-
nization primitives are needed to avoid that processes read stale values from a cache,
but instead fetch fresh values from main memory. Notably, one can impose memory
barriers, or declare that for certain variables the writes and reads are always with
regard to main memory (for example, in Java such variables are declared volatile).
Locks and read-modify-write operations tend to come with automatic synchroniza-
tion primitives: when a process acquires a lock or performs a read-modify-write op-
eration, it invalidates its working memory, to ensure that fields are reread from main
memory; and when it releases the lock, modified fields in its working memory are
written back to main memory.

Exercises

Exercise 15.1 Suppose that crashes of processes cannot be observed. Argue that it is
impossible to achieve 2-crash consensus for three processes with only test-and -set .

Exercise 15.2 Give a k-crash consensus algorithm using compare-and -set that
works for any k.

16

Mutual Exclusion II

Mutual exclusion, which aims to serialize access to a shared resource (see chapter
14), is of vital importance in a shared-memory setting. Notably, a process may want
to lock a block of shared memory, to ensure exclusive access to it.

We assume that mutual exclusion needs to be resolved among N processes
p0, . . . , pN−1. The algorithms in this chapter use spinning (also called busy-waiting),
meaning that values of registers are read repeatedly, until some condition is met.

16.1 Peterson’s algorithm

Mutual exclusion for two processes

Peterson’s algorithm provides mutual exclusion for two processes p0 and p1. The
basic idea is that when a process pb wants to enter its critical section, it signals its
intention to the process p1−b by setting a Boolean flag. Next, pb repeatedly checks
whether p1−b’s flag is set. As soon as this is not the case, pb enters its critical section.
When pb exits its critical section, it resets its flag.

This simple mutual exclusion algorithm suffers from livelock, if p0 and p1 con-
currently set their flag. To avoid livelock, Peterson’s algorithm exploits a wait regis-
ter. When pb wants to enter its critical section, not only does it set its flag, but it also
sets wait to b. If pb now finds that wait = 1− b, it can enter its critical section, even
when the flag of p1−b is set. In the latter case p0 and p1 concurrently set their flag,
and p1−b wrote to wait last, so that it must wait.

To be more precise, Peterson’s algorithm uses a multi-writer register wait with
range {0, 1}, and single-writer registers flag [b] of type Boolean for b = 0, 1; only
pb can write to flag [b]. Initially, flag [b] = false. When pb wants to enter its critical
section, it first sets flag [b] to true and then wait to b. Next, it spins on flag [1−b] and
wait until flag [1 − b] = false or wait = 1 − b, and then enters its critical section.
When pb exits its critical section, it sets flag [b] to false.

Example 16.1 We consider one possible execution of Peterson’s algorithm. Initially,
flag [b] = false for b = 0, 1.

148 16 Mutual Exclusion II

– p1 wants to enter its critical section, sets flag [1] to true and wait to 1.
– p0 wants to enter its critical section and sets flag [0] to true.
– Since flag [0] = true and wait = 1, p1 does not yet enter its critical section.
– p0 sets wait to 0. Since flag [1] = true and wait = 0, p0 does not yet enter its

critical section.
– Since wait = 0, p1 enters its critical section.
– p1 exits its critical section and sets flag [1] to false.
– p1 wants to enter its critical section, sets flag [1] to true and wait to 1. Since

flag [0] = true and wait = 1, p1 does not yet enter its critical section.
– Since wait = 1, p0 enters its critical section.

We argue that Peterson’s algorithm provides mutual exclusion. Suppose pb is in
its critical section (so it performed flag [b] ← true and wait ← b), and p1−b tries to
enter its critical section. There are two possibilities:

1. Before entering its critical section, pb read flag [1− b] = false. Then p1−b must
set flag [1− b] to true and wait to 1− b before it can enter its critical section.

2. Before entering its critical section, pb read wait = 1− b.

In both cases, wait has the value 1−b by the time p1−b starts spinning on flag [b] and
wait . Since, moreover, flag [b] = true, p1−b can enter its critical section only after
pb has set flag [b] to false or wait to b. Hence, p1−b must wait until pb is no longer in
its critical section.

Peterson’s algorithm is starvation-free. Let p1−b try to enter its critical section.
Then it sets flag [1− b] to true and wait to 1− b. Now pb could only starve p1−b by
repeatedly trying to entering its critical section, because p1−b should continuously
read flag [b] = true. However, before (re)entering, pb sets wait to b, after which
p1−b can enter its critical section.

Mutual exclusion for more than two processes

To obtain a mutual exclusion algorithm for N > 2 processes, we build a tournament
tree, being a binary tree of depth k > 0 in which each node represents an applica-
tion of Peterson’s algorithm for two processes. Initially, at most two processes are
assigned to each of the 2k leaves of the tournament tree; for simplicity, we assume
that N = 2k+1. A process that wants to enter its critical section performs Peterson’s
algorithm at its leaf. When a process becomes privileged at a nonroot, it proceeds
to the parent of this node in the tournament tree. There it runs Peterson’s algorithm
again, where it may have to compete with the winner of the competition of the sub-
tree below the other side of this node. A process that becomes privileged at the root
in the tournament tree enters its critical section.

To be more precise, nodes in the tournament tree are numbered as follows: the
root carries number 0, and given a node with the number n, its left and right child
carry the number 2n+1 and 2n+2, respectively. To each node n we associate three
multi-writer registers: waitn with range {0, 1}, and flagn[b] of type Boolean for
b = 0, 1. Initially, flagn[b] = false. Each node has two sides, 0 and 1, and a process
pi that wants to enter its critical section is assigned to the leaf (2k − 1) +
i/2�, at

16.1 Peterson’s algorithm 149

the side i mod 2. A process at side b of a node n performs the following procedure
Peterson(n, b).

flagn[b] ← true; waitn ← b;
while flagn[1− b] = true and waitn = b do

{};
end while

if n = 0 then

enter critical section;
exit critical section;

else

perform procedure Peterson(�n/2 − 1, (n+ 1) mod 2);
end if

flagn[b] ← false;

The first four lines are simply Peterson’s algorithm at node n. The next six lines
express that at the root becoming privileged means entering the critical section, while
at a nonroot it means moving to the parent node, where Peterson’s algorithm is run
once again. The last line makes sure that when a process exits its critical section, its
flags at all the nodes it visited are set back to false, thus releasing processes that may
be waiting at these nodes.

Example 16.2 We consider one possible execution of Peterson’s algorithm in a tour-
nament tree. Let N = 8, so k = 2. Suppose that p1 and p6 both want to enter their
critical section; p1 starts at node 3, side 1, and p6 at node 6, side 0.

0

1 2

3 4 5 6

p0 p1 p2 p3 p4 p5 p6 p7

Initially, flagn[b] = false for all n and b.

– p6 executes Peterson(6, 0). It sets flag6[0] to true and wait6 to 0, and (since
flag6[1] = false) continues with executing Peterson(2, 1). It sets flag2[1] to
true and wait2 to 1, and (since flag2[0] = false) continues with executing
Peterson(0, 1). It sets flag0[1] to true.

– p1 executes Peterson(3, 1). It sets flag3[1] to true and wait3 to 1, and (since
flag3[0] = false) continues with executing Peterson(1, 0). It sets flag1[0] to
true and wait1 to 0, and (since flag1[1] = false) continues with executing

150 16 Mutual Exclusion II

Peterson(0, 0). It sets flag0[0] to true and wait0 to 0. Since flag0[1] = true
and wait0 = 0, p1 must wait.

– p6 finally sets wait0 to 1. Since flag0[0] = true and wait0 = 1, p6 must wait.
– Since wait0 = 1, p1 can enter its critical section.
– When p1 exits its critical section, it sets flag0[0], flag1[0], and flag3[1] to false.
– Since flag0[0] = false, p6 can enter its critical section.

We argue that the tournament tree provides mutual exclusion. Suppose that a
process p has moved from a node n, at a side b, to its critical section (if n = 0) or
to the parent of n (if n > 0). We show by induction on k − �, where � is the depth
of n in the tournament tree, that no other process can move away from n until p has
left its critical section. For the process at side 1− b of n this follows from the mutual
exclusion property of Peterson’s algorithm for two processes. Furthermore, if n is
not a leaf, by induction, no process can move from the child of n at side b to n until
p has left its critical section. Hence, at any time, and for any � = −1, 0, . . . , k, at
most 2�+1 processes can be at a node at a depth ≤ � in the tournament tree, where
a critical section counts as depth −1. In particular, at any time, at most one process
can be in its critical section.

The tournament tree moreover is starvation-free. Suppose that a process p has
arrived at a node n in the tournament tree. We argue by induction on the depth of n
in the tournament tree that p will eventually enter its critical section. Suppose that
p is at the moment stuck at n. Then some other process q entered its critical section
(in the base case n = 0) or moved to the parent of n (in the inductive case n > 0),
thereby blocking p; in the case n > 0, by induction, q will eventually enter its critical
section. When q exits its critical section, it will set the flag at its side of n to false,
after which p can enter its critical section (if n = 0), or move to the parent of n (if
n > 0); in the latter case, by induction, p will eventually enter its critical section.

The tournament tree does not let processes enter their critical section in a first-
come, first-served manner. That is, if a process p completes Peterson’s algorithm at
its leaf before another process q starts running Peterson’s algorithm at its leaf, in
general this does not guarantee that p will enter its critical section before q.

16.2 Bakery algorithm

The bakery algorithm enforces mutual exclusion similar to the way customers in a
shop are served in a first-come, first-served fashion. When entering say a bakery,
each customer gets a ticket with a number, which is increased by one with each next
ticket. The waiting customer with the smallest number is the next to be served.

Tickets could in principle be modeled by means of a multi-writer register of type
integer. However, avoiding that multiple processes concurrently read the value of
this register and increase it by one, would require the use of a read-modify-write
operation. In the bakery algorithm, a process instead reads the numbers of all other
processes, and selects as number the maximum of all those numbers plus one. To
break ties between different processes that concurrently select the same number, the

16.2 Bakery algorithm 151

ticket of a process pi that selects a number k consists of the pair (k, i), and tickets
are ordered lexicographically: (k, i) < (�, j) if either k < �, or k = � and i < j. A
process can enter its critical section if its ticket is the smallest among all processes
that have a number greater than zero. When a process exits its critical section, it sets
its number back to zero.

To be more precise, the bakery algorithm uses single-writer registers choosing i
of type Boolean and number i of type integer, for i = 0, . . . , N − 1; only pi can
write to choosing i and number i. Initially, choosing i = false and number i = 0.
A process pi that wants to enter its critical section sets choosing i to true, reads the
values of the registers number j for all j �= i, writes max{number j | 0 ≤ j <
N}+1 into number i, and sets choosing i back to false. Next, for each j �= i, pi first
spins on choosingj until it is false, and then on number j until either number j = 0
or (number i, i) < (number j , j). After that pi can enter its critical section. When pi
exits its critical section, it sets number i to 0.

Example 16.3 We consider one possible execution of the bakery algorithm. Con-
sider three processes p0, p1, p2; initially choosing i = false and number i = 0 for
i = 0, 1, 2.

– p1 wants to enter its critical section, sets choosing1 to true, and reads number0
and number2.

– p0 wants to enter its critical section, sets choosing0 to true, and reads number1
and number2.

– p0 sets number0 to 1 and choosing0 to false. p0 does not yet enter its critical
section, because choosing1 = true.

– p1 sets number1 to 1 and choosing1 to false. p1 does not yet enter its critical
section, because (number0, 0) < (number1, 1) and number0 > 0.

– Since choosing1 = choosing2 = false, (number0, 0) < (number1, 1), and
number2 = 0, p0 enters its critical section.

– p0 exits its critical section and sets number0 to 0.
– p0 wants to enter its critical section, sets choosing0 to true, and reads number1

and number2.
– p0 sets number0 to 2 and choosing0 to false. p0 does not yet enter its critical

section, because (number1, 1) < (number0, 0) and number1 > 0.
– Since choosing0 = choosing2 = false, number1 < number0, and number2 =

0, p1 enters its critical section.

The bakery algorithm provides mutual exclusion. Suppose that pi is in its critical
section; then clearly number i > 0. Moreover, let number j > 0 for some j �= i. We
argue that then (number i, i) < (number j , j). Before pi entered its critical section,
it must have read choosingj = false, and either number j = 0 or (number i, i) <
(number j , j). If pj chooses a new ticket while pi is in its critical section, then pj
is guaranteed to take number i into account, and so will choose a larger number. To
conclude, since a privileged process always carries a positive number, and must have
the smallest ticket among all processes with a positive number, only one process can
be in its critical section at any time.

152 16 Mutual Exclusion II

The bakery algorithm is starvation-free. If a process pi wants to enter its critical
section, and other processes keep on entering and exiting their critical section, then
eventually pi will have the smallest ticket. Namely, eventually all processes that want
to enter their critical section will take the current value of number i into account, and
will choose a number larger than number i for their own ticket.

Let us say that a process pi enters its doorway when it sets choosing i to true,
and exits its doorway when it sets choosing i back to false. The bakery algorithm
treats processes in a first-come, first-served fashion, in the sense that if a process pi
exits its doorway before another process pj enters its doorway, then pi is guaranteed
to enter its critical section before pj .

The values of the number fields grow without bound. The bakery algorithm can
be adapted such that these values are limited to a finite range; see exercise 16.6.

16.3 N registers are required

In the bakery algorithm, a process that wants to enter its critical section reads the val-
ues of two registers at every other process. This renders the algorithm impractical in
case of a large number of processes. The following theorem states that in principle it
is impossible to solve mutual exclusion for N processes with fewer than N registers,
with only read and write operations.

Theorem 16.1 At least N registers are needed to solve livelock-free mutual exclu-
sion for N processes, if only read and write operations are employed.

Proof. We sketch a proof for the case N = 2; the general case is similar. Suppose,
toward a contradiction, that a livelock-free mutual exclusion algorithm for two pro-
cesses p and q uses only one multi-writer register R.

Before p can enter its critical section, it must write to R; for else q would not be
able to recognize whether p is in its critical section. Likewise, before q can enter its
critical section, it must write to R. Due to livelock-freeness, we can bring p and q in
a position where they are both about to write to R, after which they will enter their
critical section.

Suppose without loss of generality that p writes to R first and enters its critical
section. The subsequent write by q obliterates the value p wrote to R, so that q cannot
tell that p is in its critical section. Consequently q will also enter its critical section.
This contradicts the mutual exclusion property. ��

16.4 Fischer’s algorithm

Fischer’s algorithm circumvents the impossibility result from the previous section by
means of time delays.

turn is a multi-writer register, with range {−1, 0, . . . , N−1}. Initially, it has the
value −1. A process pi that wants to enter its critical section, spins on turn until its

16.5 Test-and-test-and-set lock 153

value is −1. Within one time unit of this read, pi sets the value of turn to i. Next, pi
waits for more than one time unit, and then reads turn . If it still has the value i, then
pi enters its critical section. Otherwise, pi returns to spinning on turn until its value
is −1. When a process exits its critical section, it sets the value of turn to −1.

Example 16.4 We consider one possible execution of Fischer’s algorithm. Consider
three processes p0, p1, p2, with p0 in its critical section; so turn = 0. Processes p1
and p2 both want to enter their critical section and are spinning on turn .

When p0 exits its critical section, it sets turn to −1. Now p1 and p2 concurrently
read that turn = −1. First, p1 sets the value of turn to 1, and less than one time unit
later p2 sets its value to 2. More than one time unit after it performed its write, p1
reads turn , finds that its value was changed to 2, and returns to spinning on turn . On
the other hand, more than one time unit after it performed its write, p2 reads turn ,
finds that its value is still 2, and enters its critical section.

We argue that Fischer’s algorithm guarantees mutual exclusion. When turn =
−1, clearly no process is in its critical section. And when a process pi sets the value
of turn to i, other processes pj can only set the value of turn to j �= i within one
time unit. So if the value of turn remains i for more than one time unit, pi can be
certain that no other process can become privileged.

Fischer’s algorithm is livelock-free: when the value of turn becomes −1, pro-
cesses pi that want to enter their critical section can freely write the value i in turn .
The last process to set the value of turn within one time unit of the first write, will
enter its critical section. However, there can be starvation, in case a process pi wants
to enter its critical section, infinitely often turn is set to −1 and pi writes i in turn ,
but every time this value is overwritten by a j �= i within one time unit.

A strong requirement of this algorithm is the presence of a global clock. An-
other drawback is that processes all spin on the same register turn; why this can be
problematic will be explained in the next section.

16.5 Test-and-test-and-set lock

Test-and-set lock

The test-and-set lock circumvents the impossibility result from section 16.3 by us-
ing a read-modify-write operation: test-and -set . This lock uses one Boolean multi-
writer register locked , which initially holds the value false. A process that wants to
acquire the lock, repeatedly applies test-and -set to locked : this operation sets the
value of locked to true and returns the previous value of locked . The process ob-
tains the lock (in other words, becomes privileged) as soon as false is returned by a
test-and -set operation. To unlock, the process sets locked to false.

The test-and-set lock provides mutual exclusion. When locked contains false,
clearly no process holds the lock. And when a process p acquires the lock, meaning
that it applies a test-and -set that turns the value of locked from false to true, then

154 16 Mutual Exclusion II

no other process can acquire the lock until p unlocks by setting locked to false. The
test-and-set lock moreover is livelock-free, but not starvation-free.

The test-and-set lock, although conceptually simple, tends to have a poor perfor-
mance. The reason is that each test-and -set on locked comes with a memory barrier:
at all processors it invalidates the cached value of locked . As a result, all processes
that want to acquire the lock, and so are spinning on locked , take a cache miss and
fetch the (mostly unchanged) value from main memory. This produces a continuous
storm of unnecessary messages over the bus.

Test-and-test-and-set lock

The test-and-test-and-set lock improves upon the test-and-set lock by letting pro-
cesses that want to acquire the lock spin on a cached copy of the Boolean register
locked . When false is returned, the process applies test-and -set to locked itself. The
process obtains the lock if false is returned; otherwise, it goes back to spinning on
its cached copy of locked . To unlock, the process sets locked to false.

The test-and-test-and-set lock provides mutual exclusion and livelock-freeness.
It avoids a considerable part of the bus traffic of the test-and-set lock, and therefore
tends to have a much better performance. Still, the test-and-test-and-set lock gener-
ates unnecessary bus traffic when the lock is released. Then false is written in locked ,
invalidating all cached copies. As a result, all spinners take a cache miss and go to
the bus to fetch the value of locked . Then they concurrently perform test-and -set
to try to acquire the lock, invalidating the cached copies at other processes, and thus
leading to another round of cache misses. Finally, the storm subsides and processes
return to local spinning on their cached copy of locked .

The performance of the test-and-test-and-set lock can be improved by applying
exponential back-off to reduce contention. The idea is that when a process applies
test-and -set to locked but fails to get the lock, it backs off for a certain amount
of time to avoid collisions. Each subsequent failure to get the lock by means of a
test-and -set is interpreted as a sign that there is a high contention for the lock.
Therefore, the waiting time is doubled at each failed attempt, up to some maximum.
Two important parameters, for the performance of the lock, are the initial minimum
delay and the maximum delay; optimal values for these parameters are platform-
dependent. Waiting durations are randomized, to avoid that competing processes fall
into lock-step.

Example 16.5 Consider three processes p0, p1, p2 that all want to acquire the test-
and-test-and-set lock. Initially, the Boolean register locked is false.

p0, p1, p2 concurrently read that (their cached copy of) locked is false. Let p1 ap-
ply test-and -set to locked first, setting it to true. Since this operation returns false,
p1 takes the lock. Next, p0 and p2 apply test-and -set to locked . In both cases this
operation returns true, so p0 and p1 back off for (a randomization of) the minimum
delay. After this delay, p0 and p1 start spinning on their cached copy of locked .

When p1 releases the lock, it sets locked to false. Now p0 and p2 concurrently
read that the value has changed, and apply test-and -set to locked . Let p2 be the

16.6 Queue locks 155

first to do so, setting its value to true. Since this operation returns false, p2 takes
the lock. The test-and -set by p0 returns true, after which p0 backs off for twice the
minimum delay. After this delay, p0 returns to spinning on its cached copy of locked .

The test-and-test-and-set lock with exponential back-off is easy to implement,
and can give excellent performance in case of low contention. However, it may suffer
from starvation, processes may be delayed longer than necessary due to back-off, and
last but not least, all processes still spin on the same register locked , which creates a
bottleneck and generates bus traffic, especially in case of high contention.

16.6 Queue locks

Queue locks overcome the drawbacks of the test-and-test-and-set lock by placing
processes that want to acquire the lock in a queue. A process p in the queue spins
on a register to check whether its predecessor in the queue has released the lock.
When this is the case, p takes the lock. Key to the success of queue locks is that
all processes in the queue spin on a different register. Queue locks provide mutual
exclusion because only the head of the queue holds the lock. Moreover, processes
are treated in a first-come, first-served manner: the sooner a process is added to the
queue, the earlier it is served.

Anderson’s lock

Anderson’s lock places processes that want to acquire the lock in a queue by means
of a Boolean array of size n. Here n is the maximal number of processes that can
concurrently compete for the lock (so n ≤ N). A counter is used to assign a slot in
the array to every process that wants to acquire the lock; this counter is interpreted
modulo n. Always at most one process is assigned to each slot in the array, and at
most one slot in the array holds true; the process that is assigned to this slot holds
the lock. The slots in the array and the counter are multi-writer registers. Initially,
slot 0 of the array holds true, slots 1, . . . , n− 1 hold false, and the counter is zero.

A process p that wants to acquire the lock applies the read-modify-write oper-
ation get-and -increment to the counter, which increases the counter by one and
returns the previous value of the counter. The returned value modulo n is the slot of
the process in the array. Now p spins on (a cached copy of) its slot in the array, until
it holds true, at which moment p acquires the lock. To unlock, p first sets its slot in
the array to false, and then the next slot modulo n to true, signaling to its successor
(if any) that it can take the lock.

Example 16.6 Let N = n = 3, and suppose processes p, q, r all want to acquire
Anderson’s lock. Initially, only slot 0 in the array holds true, and the counter is 0.

– q applies get-and -increment to the counter, increasing it to 1. Since this opera-
tion returns 0, and slot 0 holds true, q takes the lock.

156 16 Mutual Exclusion II

– p applies get-and -increment to the counter, increasing it to 2. Since this opera-
tion returns 1, and slot 1 holds false, p starts spinning on this slot.

– r applies get-and -increment to the counter, increasing it to 3. Since this opera-
tion returns 2, and slot 2 holds false, r starts spinning on this slot.

– When q releases the lock, it sets slot 0 to false, and slot 1 to true.
– p reads that the value of slot 1 has changed to true and takes the lock.
– q wants to acquire the lock again. It applies get-and -increment to the counter,

increasing it to 4. Since this operation returns 3, and slot 3 mod 3 = 0 holds
false, q starts spinning on slot 0.

Anderson’s lock resolves the weaknesses of the test-and-test-and-set lock. In par-
ticular, different processes spin on different registers. However, a risk is that different
slots in the array may be kept on a single cache line, being the smallest unit of mem-
ory to be transferred between main memory and a cache. When a data item in the
cache becomes invalid, the entire cache line where the data item is kept is invali-
dated. So if different slots of the array are kept on the same cache line, releasing the
lock still gives rise to unnecessary bus traffic. This may be avoided by padding: the
array size is, say, quadrupled, and slots are separated by three unused places in the
array.

A drawback of Anderson’s lock is that it requires an array of size n (or more, in
case of padding), even when no process wants the lock. Especially in case of a large
number of processes and multiple locks, this memory overhead can be costly.

CLH lock

The CLH lock does not use a fixed array. Instead, the queue of processes that are
waiting for the lock is maintained by means of a dynamic list structure; each pro-
cess that wants to acquire the lock places a node in the list. Each node ν contains a
Boolean single-writer register activeν , which becomes false after the corresponding
process has released the lock. Moreover, a multi-writer register last points to the
most recently added node in the queue. Initially, last points to a dummy node, in
which the active field is false.

A process p that wants to acquire the lock creates a node ν, with activeν = true.
It applies get-and -set(ν) to last , to make ν the last node in the queue and get a
pointer to the node of its predecessor. Next, p spins on (a cached copy of) the active
field in its predecessor’s node, until it becomes false. When this is the case, p can
take the lock. To unlock, p sets activeν to false, signaling to its successor (if any) that
it can take the lock. After releasing the lock, p can reuse the node of its predecessor
for a future lock access (but not its own node ν; see exercise 16.12).

Example 16.7 Processes p0 and p1 want to acquire the CLH lock; they create nodes
ν0 and ν1, respectively, with activeν0

= activeν1
= true. Initially, last points to a

dummy node, in which the active field is false.

– p1 applies get-and -set(ν1) to last , to let it point to ν1. Since this operation
returns the dummy node which contains false, p1 takes the lock.

16.6 Queue locks 157

– p0 applies get-and -set(ν0) to last , to let it point to ν0. Since this operation
returns ν1 which contains true, p0 starts spinning on activeν1

.
– When p1 releases the lock, it sets activeν1

to false.
– p0 reads that the value of activeν1 has changed to false and takes the lock.

The CLH lock exhibits the same good performance as Anderson’s lock, and uses
space more sparingly. The Achilles heel of the CLH lock is that due to remote spin-
ning, on the active field in the predecessor’s node, its performance is heavily depen-
dent on the presence of caches.

MCS lock

The MCS lock avoids remote spinning; instead, a process q waiting in the queue
spins on a Boolean wait field in its own node. To achieve this, q must inform its
predecessor p in the queue that q is its successor, so that after p releases the lock,
it will invert the wait field in q’s node. The price to pay is a more involved and
expensive unlock procedure, to deal with the case where q joins the queue before p
releases the lock, but informs p that q is its successor while p is releasing the lock.

Again, each process that wants to acquire the lock places a node ν in the list,
containing two multi-writer registers: a Boolean waitν , which is true as long as
the process must wait in the queue, and a pointer succν to the successor node in
the queue, or a null pointer in case ν is the last node in the queue. Moreover, the
multi-writer register last points to the last node in the queue. Initially, last = null.

A process p that wants to acquire the lock creates a node ν, with waitν = false
and succν = null. It applies get-and -set(ν) to last , to make ν the last node in the
queue and get a pointer to the node of its predecessor in the queue. If last contained
null, then p takes the lock immediately. Otherwise, p first sets waitν to true, and
then lets the succ field in the node of its predecessor point to ν. Next, p spins on
waitν until it becomes false. When this is the case, p can take the lock.

When process p releases the lock, it checks whether succν points to another
node. If so, p sets the wait field in the latter node to false, signaling to its succes-
sor that it can take the lock. If on the other hand succν = null, then p applies
compare-and -set(ν, null) to last , signaling that the queue has become empty. If
this operation fails, meaning that it returns false, then another process q which joined
the queue in the meantime has written to last . In that case, p starts spinning on succν
until a node is returned, which is the node of q. Finally, p sets the wait field in q’s
node to false. After releasing the lock, p can reuse ν for a future lock access

Example 16.8 Processes p0 and p1 want to acquire the MCS lock; they create nodes
ν0 and ν1, respectively, containing false and null. Initially, last = null.

– p1 applies get-and -set(ν1) to last , to let it point to ν1. Since this operation
returns null, p1 takes the lock.

– p0 applies get-and -set(ν0) to last , to let it point to ν0. Since this operation
returns ν1, p0 sets waitν0

to true, lets succν1
point to ν0, and starts spinning on

waitν0
.

158 16 Mutual Exclusion II

– When p1 releases the lock, it finds that succν1
points to ν0. Therefore, p1 sets

waitν0
to false.

– p0 reads that the value of waitν0
has changed to false and takes the lock.

Example 16.9 Processes p0 and p1 want to acquire the MCS lock; they create nodes
ν0 and ν1, respectively, containing false and null. Initially, last = null.

– p1 applies get-and -set(ν1) to last , to let it point to ν1. Since this operation
returns null, p1 takes the lock.

– p0 applies get-and -set(ν0) to last , to let it point to ν0. This operation returns ν1.
– When p1 releases the lock, it finds that succν1

= null. Therefore, it applies
compare-and -set(ν1, null) to last . Since last points to ν0, this operation re-
turns false. Therefore, p1 starts spinning on succν1 .

– p0 sets waitν0 to true, lets succν1 point to ν0, and starts spinning on waitν0 .
– p1 finds that succν1

points to ν0 and sets waitν0
to false.

– p0 reads that the value of waitν0
has changed to false and takes the lock.

The MCS lock tends to outperform the CLH lock on so-called cacheless NUMA
(Non-Uniform Memory Access) architectures, where each processor is provided
with its own memory unit, instead of one shared-memory unit.

Timeouts

With queue locks, a process p in the queue cannot easily give up its attempt to acquire
the lock, because its successor in the queue depends on p. We now explain how the
CLH lock can be adapted to include such timeouts. The key is that p needs to tell its
successor to start spinning on the node of p’s predecessor in the queue.

Again, a process p that wants to acquire the lock places a node ν in the list, with
a single-writer register predν that contains either:

• null, in case p is waiting in the queue or is in its critical section; or
• a pointer to the node of p’s predecessor in the queue, in case p has given up

waiting for the lock; or
• a pointer to a special node called released, in case p has left its critical section.

The multi-writer register last points to the last node in the queue. Initially, last =
null.

When p wants to acquire the lock, it creates a node ν with predν = null. It ap-
plies get-and -set(ν) to last , to make ν the last node in the queue and get a pointer
to the node of its predecessor. If last contained null, then p takes the lock imme-
diately. Otherwise, it spins on (a cached copy of) the pred field in its predecessor’s
node until it is not null. If it points to the node released, then p takes the lock.
Otherwise, it points to the node ν′ of the new predecessor of p (meaning that p’s
original predecessor has timed out). In that case, p continues to spin on predν′ until
it is not null.

If p quits its attempt to acquire the lock, it applies compare-and -set(ν, predp)
to last . If this operation fails, then p has a successor in the queue; in that case, p sets

Exercises 159

predν to the node of its predecessor, signaling to the successor of p that it has a new
predecessor.

When p releases the lock, it applies compare-and -set(ν, null) to last . If this
operation succeeds, then the queue has become empty. If it fails, then p has a succes-
sor in the queue. In the latter case p sets predν to the node released, signaling to
its successor that it can take the lock.

Example 16.10 Processes p0, p1, and p2 want to acquire the CLH lock with time-
outs; they create nodes ν0, ν1, and ν2, respectively, containing null. Initially,
last = null.

– p1 applies get-and -set(ν1) to last , to let it point to ν1. Since this operation
returns null, p1 takes the lock.

– p0 applies get-and -set(ν0) to last , to let it point to ν0. Since this operation
returns ν1, p0 starts spinning on predν1

.
– p2 applies get-and -set(ν2) to last , to let it point to ν2. Since this operation

returns ν0, p2 starts spinning on predν0
.

– p0 decides to abort its attempt to acquire the lock. It lets predν0
point to ν1.

– p2 finds that predν0
has changed from null to ν1 and starts spinning on predν1

.
– When p1 releases the lock, it applies compare-and -set(ν1, null) to last . This

operation fails, because last points to ν2 instead of ν1. Therefore, p1 lets predν1

point to released.
– p2 finds that predν1

has changed from null to released and takes the lock.

Bibliographical notes

Peterson’s mutual exclusion algorithm for two processes originates from [62], and
the bakery algorithm from [44]. The fact that mutual exclusion for N processes re-
quires N registers was proved in [13]. Fischer’s algorithm was proposed in an email
by Michael J. Fischer in 1985, and put forward in [46]. The test-and-test-and-set lock
is due to [42]. Anderson’s lock stems from [3], the CLH lock from [23, 51], the MCS
lock from [58], and the CLH lock with timeouts from [69].

Exercises

Exercise 16.1 Explain why the following mutual exclusion algorithm is flawed. Let
flag be a multi-writer Boolean register. A process p wanting to enter its critical sec-
tion waits until flag = false. Then p performs flag ← true and becomes privileged.
When p exits its critical section, it performs flag ← false.

Exercise 16.2 2-mutual exclusion is satisfied if at any time at most two processes
are in their critical section. Modify the tournament tree (in which the nodes run
Peterson’s algorithm) to yield a solution for the 2-mutual exclusion problem.

160 16 Mutual Exclusion II

Exercise 16.3 Present a starvation-free 2-mutual exclusion algorithm, using one reg-
ister and a read-modify-write operation.

Exercise 16.4 Suppose that in the bakery algorithm a process could enter its critical
section without waiting for all choosing registers to become false. Give an example
to show that then mutual exclusion is no longer guaranteed.

Exercise 16.5 Describe an execution of the bakery algorithm in which the values of
number registers grow without bound.

Exercise 16.6 Adapt the bakery algorithm such that the range of the number regis-
ters becomes finite.

Exercise 16.7 Argue the correctness of theorem 16.1 for the case N = 3.

Exercise 16.8 Explain why the proof of theorem 16.1 does not apply to Fischer’s
algorithm.

Exercise 16.9 Give an example of starvation with Fischer’s algorithm.

Exercise 16.10 Argue in detail that Anderson’s lock provides mutual exclusion and
first-come, first-served fairness.

Exercise 16.11 Give an example (with n = 3) to show what could go wrong if in
Anderson’s lock a process that releases the lock would first set the next slot modulo
n in the array to true, and only then its own slot to false.

Exercise 16.12 [37] Suppose that in the CLH lock, a process would reuse its own
node (instead of the node of its predecessor). Give an execution to show that then the
algorithm would be flawed.

Exercise 16.13 For each of the two read-modify-write operations in the MCS lock,
replace this operation by read and write operations, and give an execution to show
that the resulting lock is flawed. In both cases explain which property is violated.

Exercise 16.14 Argue in detail that (the unlock procedure of) the MCS lock does
not suffer from deadlock.

Exercise 16.15 Consider for the MCS lock the situation where a process p wants to
acquire the lock and finds that last points to a node. Suppose that p would first set
the succ field of that node to its own node, and only then set the wait field in its own
node to true. What could go wrong?

Exercise 16.16 Develop a variant of the MCS lock that includes timeouts, allowing
a process to abandon its attempt to obtain the lock.

17

Barriers

Suppose processes must collectively wait at some point until all processes have ar-
rived there, after which they can leave the barrier and resume execution. For exam-
ple, this can be necessary for a soft real-time application, where a number of subtasks
may have to be completed by the different processes before the overall application
can proceed. This can be achieved by means of a barrier, which keeps track whether
all processes have reached it. When the last process has reached the barrier, all pro-
cesses can leave the barrier and resume execution.

Waiting at a barrier resembles waiting to enter a critical section. It can be based
on spinning on local or (locally cached copies of) remote variables, or on falling
asleep when the barrier is reached and being woken up when all processes have
reached the barrier.

17.1 Sense-reversing barrier

A straightforward way to implement a barrier is to maintain a counter, being a multi-
writer register, with initial value 0. Each process that reaches the barrier performs
get-and -increment on the counter; a read-modify-write operation is needed, be-
cause otherwise multiple processes could concurrently increase the counter to the
same value. When the counter equals the number N of processes that must reach the
barrier, all processes can leave the barrier.

If a process reaches the barrier and applies a get-and -increment that returns a
value smaller than N −1, then it can fall asleep. The last process to reach the barrier,
for which get-and -increment returns N − 1, first resets the value of the counter to
0, so that it can be reused, and then wakes up all other processes. A drawback of this
approach is that the waking-up phase can be time-consuming.

A better idea may be to use a global Boolean sense field, a multi-writer register,
which initially is false. Moreover, each process carries a local Boolean sense field, a
single-reader/single-writer register, which initially is true. A process p that reaches
the barrier applies get-and -increment to the counter. In case p is not the last to reach
the barrier, meaning that get-and -increment returns a value smaller than N − 1, it

162 17 Barriers

starts spinning on the barrier’s global sense field until it equals p’s local sense, after
which p can leave the barrier. On the other hand, in case p is the last to reach the
barrier, it first resets the counter to 0, so that it can be reused, and then reverses the
value of the global sense field, signaling to the other processes that they can leave
the barrier. Processes resume execution with reversed local sense, so that not only the
counter but also the (global and local) sense fields can be reused for a next barrier.

Example 17.1 We consider one possible execution of the sense-reversing barrier.
Given three processes p, q, r, initially with local sense true. The barrier’s counter
initially has the value 0, and its global sense is false.

– Process q reaches the barrier and applies get-and -increment to the counter,
which returns 0. Therefore, q starts spinning on the global sense field until it
is true.

– Process p reaches the barrier and applies get-and -increment to the counter,
which returns 1. Therefore, p starts spinning on the global sense field until it
is true.

– Process r reaches the barrier and applies get-and -increment to the counter,
which returns 2. Therefore, r resets the value of the counter to 0, reverses the
global sense field to true, and leaves the barrier with reversed local sense false.

– Processes p and q notice that the global sense of the barrier has become true, and
also leave the barrier with reversed local sense false.

The main drawback of the sense-reversing barrier is, similar to the test-and-test-
and-set lock, that processes that have arrived at the barrier are all spinning on (a
cached copy of) the same global sense field.

17.2 Combining tree barrier

The combining tree barrier uses a tree structure to reduce contention on the global
sense field. Each node represents a sense-reversing barrier; processes that are waiting
at the barrier, are spinning on the global sense field of a node.

Let the tree have depth k, and let each node at a depth smaller than k have r
children. The corresponding combining tree barrier can cope with rk+1 processes: to
each leaf we assign at most r processes. For simplicity, we assume that N = rk+1.
Each node maintains a counter and a global sense field. At a leaf, the counter keeps
track how many of its processes have reached the barrier, while at a nonleaf it keeps
track at how many of the children of the node the counter has become r. As soon as
the counter of a nonroot becomes r, the counter of the parent of this node is increased
by one. When finally the counter at the root of the tree becomes r, we can be certain
that all processes have reached the barrier. Then the counters are reset, and the global
sense fields are reversed at all the nodes, from top (the root) to bottom (the leaves),
after which all processes resume execution.

To be more precise, nodes in the tree are numbered as follows: the root carries
number 0, and given a node with the number n, its children carry the numbers rn+

17.2 Combining tree barrier 163

1 up to rn + r. To each node n we associate two multi-writer registers: countn
of type integer and gsensen of type Boolean. We assume that there are processes
p0, . . . , pN−1. Each process pi maintains a single-reader/single-writer local sense
field lsensei. Initially, countn = 0, gsensen = false, and lsensei = true. Process
pi is assigned to leaf rk−1 + rk−2 + · · · + 1 +
i/r� in the tree. That is, when
pi reaches the barrier, it performs the following procedure CombiningTree(n) with
n = rk−1 + rk−2 + · · ·+ 1 +
i/r�.

if countern.get-and -increment < r − 1 then

while gsensen �= lsensei do

{};
end while

else

if n > 0 then

perform procedure CombiningTree(�n
r − 1);

end if

countn ← 0; gsensen ← lsensei;
end if

A process pi performing CombiningTree(n) first applies get-and -increment to the
counter at node n. If the counter is increased to a value smaller than r, then pi starts
spinning on the global sense field of n until it equals pi’s local sense. On the other
hand, if pi increases the counter at n to r, then we distinguish the case where n is a
nonroot from the case where n is the root of the tree. If n is a nonroot, then pi moves
to the parent of n in the tree, where it performs CombiningTree again. If n is the
root of the tree, then all processes have reached the barrier. In this case pi resets the
counter at the root to 0, so that it can be reused, and next reverses the value of the
global sense field at the root, signaling to the r − 1 processes spinning on this field
that they can leave the barrier.

Processes that find the global sense field they are spinning on reversed, and the
process that reverses the global sense at the root, reset the counter and reverse the
global sense field at all the nodes they visited before, signaling to the r−1 processes
spinning on such a field that they can leave the barrier. Processes resume execution
with reversed local sense, so that the counters and sense fields can be reused for a
next barrier.

Example 17.2 We consider one possible execution of the combining tree barrier. Let
k = 2, r = 2, and N = 8. The processes p0 up to p7 are assigned to the leaves of
the tree as depicted below. Initially, the counters at the nodes are 0, the global sense
fields at the nodes are false, and all processes have local sense true.

164 17 Barriers

0

1 2

3 4 5 6

p0 p1 p2 p3 p4 p5 p6 p7

– Let p0, p2, p4, and p7 arrive at the barrier. They apply get-and -increment to the
counter of their leaf, increasing it to 1. Next, they start spinning on the global
sense field of their leaf, until it becomes true.

– Let p1 and p6 arrive at the barrier. They apply get-and -increment to the counter
of leaf 3 and 6, respectively, increasing it to 2. Next, they move to node 1 and 2
respectively, where they apply get-and -increment to the counter, increasing it
to 1. They start spinning on the global sense field of node 1 and 2 respectively,
until it becomes true.

– Let p3 arrive at the barrier. It applies get-and -increment to the counter of leaf 4,
increasing it to 2. Next, it moves to node 1, where it applies get-and -increment
to the counter, increasing it to 2. Next, it moves to the root, where it applies
get-and -increment to the counter, increasing it to 1. It starts spinning on the
global sense field of the root, until it becomes true.
The resulting situation is as follows.

0

1 2

3 4 5 6

p2 p4 p5 p7p0

p1 p6

p3

– Finally, p5 arrives at the barrier. It applies get-and -increment to the counter
of leaf 5, increasing it to 2. Next, it proceeds to node 2, where it applies
get-and -increment to the counter, increasing it to 2. Next, it moves to the root,
where it applies get-and -increment to the counter, increasing it to 2. It reverses
the global sense field of the root to true.

– p5 moves to node 2, where it reverses the global sense field to true. And p3,
which finds that the global sense field of the root has become true, moves to
node 1, where it reverses the global sense field to true.

– p5 and p3 move to leaf 5 and 4, respectively, where they reverse the global sense
field to true. And p1 and p6, which find that the global sense field of node 1 and

17.3 Tournament barrier 165

2, respectively, has become true, move to leaf 3 and 6, respectively, where they
reverse the global sense field to true.

– p0, p2, p4, and p7 find that the global sense field they are spinning on has become
true. All eight processes leave the barrier and continue their execution with re-
versed local sense false.

We argue that the combining tree barrier is correct. It is easy to see, by induction
on depth, that the counter at a node n becomes r if and only if the processes assigned
to the leaves below n have all reached the barrier: in the base case of the induction, n
is a leaf, and in the inductive case, the claim has already been proved for the children
of n. So in particular, the counter at the root becomes r if and only if all processes
have reached the barrier. Furthermore, when this happens, it is guaranteed that the
global sense fields at all nodes are reversed, so that all processes leave the barrier.

17.3 Tournament barrier

The tournament barrier is an improvement over the combining tree barrier in the
sense that it allows processes to spin on local variables, and does not use any read-
modify-write operations.

Consider a tournament tree of a depth k > 0, being a binary tree in which each
node represents a barrier of size two. The corresponding tournament barrier can cope
with 2k+1 processes: to each leaf we assign at most two processes. For simplicity,
we assume that N = 2k+1. Each node is divided into an active and a passive side;
both sides of the node carry a global sense field. The active and passive side of every
nonleaf in the tree have one child each, and to both the active and the passive side of
every leaf in the tree one process is assigned.

The idea behind the tournament barrier is that a process p at the passive side of
a node signals to (the global sense field of) its active partner at this node that p has
arrived at the barrier. Next, p starts spinning on the global sense field of its passive
side until it has been reversed, after which p can leave the barrier. Conversely, a
process at the active side of a node waits until it receives a signal that its passive
partner at this node has arrived at the barrier, and then either moves on to the parent
of this node, at a nonroot, or concludes that the barrier has been completed, at the
root. In the latter case the passive global sense fields are reversed at all the nodes,
from top (the root) to bottom (the leaves), after which all processes resume execution,
with reversed local sense.

To be more precise, nodes in the tree are numbered similar to the combining tree
barrier with r = 2 (and the binary tree in Peterson’s algorithm). To each node n we
associate two Boolean multi-writer registers: asensen and psensen. We assume that
there are processes p0, . . . , pN−1. Each process pi maintains a single-reader/single-
writer local sense field lsensei. Initially, asensen = psensen = false and lsensei =
true. Process pi is assigned to leaf (2k − 1) +
i/2� in the tree, at the active side
if i is even and at the passive side if i is odd. That is, when pi reaches the barrier, it
performs the following procedure Tournament(n, b) with n = (2k−1)+
i/2� and
b = i mod 2; here, b = 0 represents the active and b = 1 the passive side of node n.

166 17 Barriers

if b = 1 then

asensen ← lsensei;
while psensen �= lsensei do

{};
end while

else

while asensen �= lsensei do

{};
end while

if n > 0 then

perform procedure Tournament(�n
2 − 1, (n+ 1) mod 2);

end if

psensen ← lsensei;
end if

A process pi that performs Tournament(n, b) acts as follows.

• If b = 1, then pi sets the active sense field of n to pi’s local sense, and starts
spinning on the passive sense field of n until it equals pi’s local sense. When
this is the case, pi reverses the passive sense fields of nodes it visited before and
leaves the barrier.

• If b = 0, then pi starts spinning on the active sense field of n until it equals pi’s
local sense. In case n is not the root of the tree, pi moves to the parent of n,
where it performs Tournament again. On the other hand, in case n is the root of
the tree, pi reverses the passive sense fields of nodes it has visited and leaves the
barrier.

As we said before, processes resume execution with reversed local sense.
It is determined beforehand on which global sense fields a process will spin while

waiting for the barrier to complete. And for each global sense field of each active
or passive part of a node there is exactly one process that will spin on this field.
Therefore, each of these fields can be kept in the local memory of the process that
spins on it.

Example 17.3 We consider one possible execution of the tournament barrier. Let
k = 2 and N = 8. The processes p0 up to p7 are assigned to the leaves of the tree as
depicted below, whereby p0, p2, p4, p6 are assigned to the active and p1, p3, p5, p7 to
the passive side of their leaf. For each nonleaf, its even and odd child are assigned to
its active and passive side, respectively. Initially, the sense fields at both sides of the
nodes are false, and all processes have local sense true.

17.3 Tournament barrier 167

0

1 2

3 4 5 6

p0 p1 p2 p3 p4 p5 p6 p7

– Let p0, p2, p4, and p7 arrive at the barrier. Then p0, p2, and p4 move to their leaf,
and start spinning on the active sense field, until it equals true. And p7 moves
to its leaf 6, sets the active sense field to true, and starts spinning on the passive
sense field, until it equals true.

– Let p1 arrive at the barrier. It moves to its leaf 3, sets the active sense field to
true, and starts spinning on the passive sense field.

– When p0 finds that the active sense field of leaf 3 has become true, it moves to
node 1, where it starts spinning on the active sense field.

– Let p6 arrive at the barrier. It moves to its leaf 6, where it finds that the active
sense field is true. Therefore, it moves to node 2, sets the active sense field to
true, and starts spinning on the passive sense field.

– Let p3 arrive at the barrier. It moves to its leaf 4, sets the active sense field to
true, and starts spinning on the passive sense field.

– When p2 finds that the active sense field of leaf 4 has become true, it moves
to node 1, where it sets the active sense field to true, and starts spinning on the
passive sense field.

– When p0 finds that the active sense field of node 1 has become true, it moves to
the root, and starts spinning on the active sense field.
The resulting situation is depicted in the following diagram; p0 is spinning on the
active sense field of the root, while six other processes are spinning on a passive
sense field.

0

1 2

3 4 5 6

p7

p2 p6

p0

p1 p3 p4 p5

– Finally, p5 arrives at the barrier. It moves to its leaf 5, sets the active sense field
to true, and starts spinning on the passive sense field.

168 17 Barriers

– When p4 finds that the active sense field of leaf 5 has become true, it moves to
node 2. Since the active sense field of node 2 is true, p4 moves on to the root,
where it sets the active sense field to true, and starts spinning on the passive
sense field.

– When p0 finds that the active sense field of the root has become true, it sets the
passive sense fields at nodes 0, 1, and 3 to true.

– When p4 finds that the passive sense field of the root has become true, it sets the
passive sense fields at nodes 2 and 5 to true.

– When p2 and p6 find that the passive sense field of node 1 and 2, respectively,
has become true, they set the passive sense field at leaf 4 and 6, respectively, to
true.

– p1, p3, p5, and p7 find that the passive sense field they are spinning on has be-
come true. All eight processes leave the barrier and continue their execution with
reversed local sense false.

Correctness of the tournament tree can be argued in a similar fashion as for the
combining tree barrier.

17.4 Dissemination barrier

The dissemination barrier progresses in rounds; in each round, every process that has
reached the barrier notifies some other process, and waits for notification by some
other process. Just as in the tournament barrier, no read-modify-write operations are
used.

Suppose that N processes p0, . . . , pN−1 are to reach the barrier. A process that
reaches the barrier starts with executing round 0. In a round n ≥ 0, each process pi
that has reached the barrier:

• notifies process p(i+2n) mod N ,
• waits for notification by process p(i−2n) mod N , and
• progresses to round n+ 1.

When a process completes round �log2 N − 1, all N processes have reached the
barrier. So then the process can leave the barrier.

Example 17.4 We consider one execution of the dissemination barrier, with N = 5.
Since �log2 5 = 3, the barrier is completed after round 2.

– In round 0, each process pi notifies process p(i+1) mod 5, and waits for notifica-
tion by process p(i−1) mod 5.

– In round 1, each process pi notifies process p(i+2) mod 5, and waits for notifica-
tion by process p(i−2) mod 5.

– In round 2, each process pi notifies process p(i+4) mod 5, and waits for notifica-
tion by process p(i−4) mod 5.

Bibliographical notes 169

p0

p1

p2

p3

p4

round 0 round 1 round 2

When a process has completed round 2, it can leave the barrier.
Note that if, for instance, p0 has not yet reached the barrier, then p1 cannot com-

plete round 0, p2 and p3 cannot complete round 1, and p4 cannot complete round 2.
So no process can leave the barrier.

We argue the correctness of the dissemination barrier. When all N processes have
reached the barrier, clearly all �log2 N rounds can be completed by all processes.
Now suppose that some process pi has not yet reached the barrier; we argue that then
no process can have completed round �log2 N − 1. For simplicity, we take N = 2k

for some k > 0, so that �log2 N = k. In the following explanation, subscripts of
processes are to be interpreted modulo 2k.

– Since pi has not reached the barrier, pi+1 has not completed round 0.
– Since pi, pi+1 have not completed round 0, pi+2, pi+3 have not completed round

1.
– Since pi, pi+1, pi+2, pi+3 have not completed round 1, pi+4, pi+5, pi+6, pi+7

have not completed round 2.
– · · ·
– Since pi, . . . , pi+2k−1−1 have not completed round k − 2, pi+2k−1 , . . . , pi+2k−1

have not completed round k − 1.

Since subscripts are interpreted modulo 2k, pi+2k−1 is pi−1. So no process has left
the barrier.

Bibliographical notes

The combining tree barrier originates from [81]. The tournament barrier and the
dissemination barrier stem from [36].

170 17 Barriers

Exercises

Exercise 17.1 Explain under which circumstances it is more favorable to let pro-
cesses that have arrived at the barrier fall asleep, and under which circumstances it
is better to use spinning.

Exercise 17.2 Consider the sense-reversing barrier. Suppose that the last process to
reach the barrier would first reverse the value of the global sense field, and only then
reset the counter to 0. What could go wrong?

Exercise 17.3 Continue the application of the sense-reversing barrier in example
17.1, by reusing the counter and the sense fields (with their reversed values) for a
next barrier. Give one possible execution.

Exercise 17.4 Argue that the sense-reversing barrier is a correct barrier. Take into
account that the counter and sense fields are reused for multiple subsequent barriers.

Exercise 17.5 [37] Argue that the combining tree barrier can employ any barrier
algorithm in its nodes (so not just the sense-reversing barrier).

Exercise 17.6 Consider the tournament barrier, with k = 2 and N = 8. Give an
execution in which at some point only one process has not yet reached the barrier,
and all other processes are spinning on a passive sense field.

Exercise 17.7 Argue the correctness of the dissemination barrier for any N .

18

Self-Stabilization

A distributed algorithm is self-stabilizing if it will always end up in a correct config-
uration, even if it is initialized in an incorrect (possibly unreachable) configuration.
A strong advantage of self-stabilization is that it provides fault-tolerance in circum-
stances where the system moves to an incorrect configuration, for example, due to a
hardware error or a malicious intruder. Self-stabilization can offer an attractive so-
lution in case failures are infrequent and temporary malfunction is acceptable, as is
often the case in operating systems and database systems. An important requirement
is that failures are resolved within a relatively short period of time.

The self-stabilizing algorithms that are discussed in this chapter target a net-
work of N processes. Self-stabilizing algorithms are generally presented in a shared-
memory framework. The reason is that in a message-passing framework, all pro-
cesses might be initialized in a state in which they are waiting for a message to
arrive, in which case the network would exhibit no behavior at all. In shared mem-
ory, processes take into account the values of variables at their neighbors, so that
such deadlocks can be avoided. We assume that the local variables at the processes
are single-writer registers and that processes can read values of variables at their
neighbors.

We will discuss self-stabilizing algorithms for mutual exclusion, where initially
multiple processes may be privileged, and for computing a spanning tree, where
initially there may, for instance, be a cycle in the spanning tree.

18.1 Dijkstra’s token ring for mutual exclusion

Dijkstra’s self-stabilizing token ring for mutual exclusion assumes a directed ring of
processes p0, . . . , pN−1. Each process pi holds a single-writer register xi with values
in {0, . . . ,K − 1}, where K ≥ N ; process pi can read the value of the register at its
predecessor p(i−1) mod N in the ring. The privileged processes are defined as follows:

• pi for i = 1, . . . , N − 1 is privileged if xi �= xi−1.
• p0 is privileged if x0 = xN−1.

172 18 Self-Stabilization

Since Dijkstra’s token ring can be initialized in any configuration, clearly there can
be multiple privileged processes at the start (if N ≥ 3).

Each privileged process is allowed to change its value, causing the loss of its
privilege:

• pi can perform xi ← xi−1 if xi �= xi−1, for any i = 1, . . . , N − 1.
• p0 can perform x0 ← (x0 + 1) mod K if x0 = xN−1.

Example 18.1 Consider a ring of size three, with K = 3. Initially, each process has
the value 0, so that only process p0 is privileged. Then p0 can pass on the privilege
to p1, by setting x0 to 1. Next, p1 can pass on the privilege to p2, by setting x1 to 1.
Now p2 can pass on the privilege to p0, by setting x2 to 1, and so on.

In Dijkstra’s token ring, always at least one process is privileged. Namely,
if p1, . . . , pN−1 are not privileged, then it must be the case that the registers
x0, . . . , xN−1 all contain the same value. But then p0 is privileged, because x0 =
xN−1. Furthermore, an event at a process pi never increases the number of privi-
leged processes, because pi loses its privilege, and the event can at most cause pi’s
successor p(i+1) mod N in the ring to become privileged. So if the initial configura-
tion is correct, in the sense that only one process is privileged, then mutual exclusion
is guaranteed.

Example 18.2 Let N = K = 4, and consider the following initial configuration.

p0

p3

p2

32

0

1

p1

Initially, p1, p2, and p3 are privileged. Each computation will eventually lead to a
configuration in which only one process is privileged. The value at p0 is different
from the values at p1, p2, and p3. In the proof of theorem 18.1 it will be argued that
in each infinite computation, p0 must eventually perform an event. The only way p0
can perform an event is if the register at p3 attains the value 0. This can happen only
if first the register at p2 attains this value. And in turn this can happen only if first the
register at p1 attains the value 0. Then the registers at p1, p2, and p3 have attained the
value 0, so only p0 is privileged.

For instance, first x3 ← 1. Next, x2 ← 3 and x3 ← 3. And finally, x1 ← 0,
x2 ← 0, and x3 ← 0. Now only p0 is privileged.

18.1 Dijkstra’s token ring for mutual exclusion 173

Theorem 18.1 If K ≥ N , then Dijkstra’s token ring for mutual exclusion always
eventually reaches a correct configuration, in which starvation-free mutual exclusion
is guaranteed.

Proof. Consider an infinite computation; we need to argue that eventually a con-
figuration is reached in which only one process is privileged. The longest possible
sequence of transitions without an event at p0 consists of 1

2 (N − 1)N events at
p1, . . . , pN−1: one event at p1 (copying p0’s value), two events at p2 (copying p1’s
first and second value), and so on, up to N − 1 events at pN−1. So the infinite com-
putation involves infinitely many events at p0. Since at each such event p0 increases
its value by one modulo K, this implies that during the execution, x0 ranges over
all values in {0, . . . ,K − 1}. Since p1, . . . , pN−1 only copy values from their pre-
decessors, and K ≥ N , it follows that in some configuration of the computation,
x0 �= xi for all i = 1, . . . , N −1. The next time p0 becomes privileged, that is, when
xN−1 = x0, clearly xi = x0 for all i = 1, . . . , N − 1. Then only p0 is privileged, so
mutual exclusion has been achieved.

Starvation-freeness follows from the fact if N ≥ 2, then in a correct configuration
the privileged process always passes on the privilege to its successor. ��

For N ≥ 3, theorem 18.1 also holds if K = N − 1. (In case N = 2 and K =
1, starvation-freeness is violated.) Let us revisit the argumentation in the proof of
theorem 18.1. When pN−1 copies the value from pN−2, the processes p1, . . . , pN−1

hold at most N − 2 different values (because N ≥ 3). Since p1, . . . , pN−1 only
copy values, they are then restricted to these N − 2 values, as long as the value
of x0 is also among these N − 2 values. Since K ≥ N − 1, and in each infinite
computation p0 performs infinitely many events, it follows that in some configuration
of the computation, x0 �= xi for all i = 1, . . . , N − 1. The next time p0 becomes
privileged, xi = x0 for all i = 1, . . . , N − 1. Then only p0 is privileged.

The value K = N − 1 is sharp; the next example shows that if K = N − 2, then
there are infinite computations in which mutual exclusion is never achieved.

Example 18.3 Let N ≥ 4 and K = N − 2, and consider the following initial
configuration.

174 18 Self-Stabilization

pN−1
p0

p1

p2

p3

p4pN−4

pN−3

pN−2

N−3

N−4

N−5

2

1

0

N−3 N−3

N−6

In this configuration only p1 is not privileged. We consider one possible computation
of Dijkstra’s token ring. First, p0 sets x0 to ((N − 3) + 1) mod (N − 2) = 0. Next,
pN−1 sets xN−1 to 0, then pN−2 sets xN−2 to 1, and so on. This sequence of events
proceeds in a clockwise fashion, until finally p1 sets x1 to 0. Then we have reached
the following configuration.

pN−1
p0

p1

p2

p3

p4pN−4

pN−3

pN−2

0

N−3

N−4

3

2

1

0 0

N−5

The only difference with the initial configuration is that the values of the registers
have increased by one, modulo N −2. In particular, in the configuration above again
only p1 is not privileged. This execution pattern can be repeated over and over again,
leading to an infinite computation in which always N − 1 processes are privileged at
the same time.

18.2 Arora-Gouda spanning tree algorithm 175

18.2 Arora-Gouda spanning tree algorithm

In the Arora-Gouda self-stabilizing spanning tree algorithm for undirected networks,
the process with the largest ID eventually becomes the root of a spanning tree of the
network. The algorithm requires that all processes know an upper bound K on the
network size.

Each process keeps track of its parent in the spanning tree, which process is the
root, and its distance to the root via the spanning tree. Due to arbitrary initialization,
there are three complications: first, multiple processes may consider themselves the
root; second, there may be a cycle in the spanning tree; and third, there may be a
“false” root, meaning that processes may consider a process q the root while q is
not in the network at all. The idea behind the Arora-Gouda algorithm is that these
inconsistencies can be resolved if a process declares itself the root of the spanning
tree, and adapts its local variables accordingly, every time it detects an inconsistency
in the values of its local variables. Moreover, a process may resolve inconsistencies
between the values of its own local variables and those of its neighbors.

Each process p maintains the following variables.

parentp : p’s parent in the spanning tree.
rootp : the root of the spanning tree.
distp : p’s distance from the root, via the spanning tree.

The value ⊥ for parentp means that p’s parent is undefined (in particular when p
considers itself the root). A process p declares itself root, that is,

parentp ←⊥ rootp ← p distp ← 0,

when it detects an inconsistency in the values of its local variables:

– rootp < p; or
– parentp =⊥, and rootp �= p or distp �= 0; or
– parentp �=⊥ and parentp is not a neighbor of p; or
– distp ≥ K.

In the first case, rootp is not the largest ID in the network. In the second case, parentp
says p is the root, while rootp or distp says not. In the third case, parentp has an
improper value. And the fourth case is in contradiction with the fact that K is an
upper bound on the network size.

Suppose there is no such inconsistency in the local variables of p. Let q be a
neighbor of p with distq < K. If q = parentp and p detects an inconsistency
between its own and q’s variables, then p can bring its root and distance value in line
with those of q:

rootp ← rootq distp ← distq + 1.

Furthermore, if q �= parentp and rootp < rootq , then p can make q its parent:

parentp ← q rootp ← rootq distp ← distq + 1.

176 18 Self-Stabilization

Example 18.4 We consider one possible computation of the Arora-Gouda algorithm
on the following undirected network, with K = 5. Arrows point from a child to its
parent. Note that all processes consider process 8 the root, but that this is a false root.

2 3 1

7

5

root2 = 8

dist2 = 4

root3 = 8

dist3 = 2

root1 = 8

dist1 = 3 dist5 = 4

root5 = 8

root7 = 8

dist7 = 3

First, process 3 notes that it has distance 2 to the root, while its parent 2 has distance
4. Therefore, process 3 sets its distance to 5. Then it has a distance equal to K = 5,
so it declares itself root: parent3 ←⊥, root3 ← 3, and dist3 ← 0. As a result,
processes 7 and 1 set their root to 3 and their distance to 1, and next processes 2 and
5 set their root to 3 and their distance to 2.

2 3 1

7

5

root2 = 3

dist2 = 2

root3 = 3

dist3 = 0

root1 = 3

dist1 = 1 dist5 = 2

root5 = 3

root7 = 3

dist7 = 1

Now process 5 finds an inconsistency in its local variables: its root value is smaller
than its own ID. Therefore, it declares itself root: parent5 ←⊥, root5 ← 5, and
dist5 ← 0. As a result, first process 1 makes process 5 its parent: parent1 ← 5,
root1 ← 5, and dist1 ← 1; next process 3 makes process 1 its parent: parent3 ← 1,
root3 ← 5, and dist3 ← 2; and next process 2 makes process 3 its parent:
parent2 ← 3, root2 ← 5, and dist2 ← 3.

2 3 1

7

5

root2 = 5

dist2 = 3

root3 = 5

dist3 = 2

root1 = 5

dist1 = 1 dist5 = 0

root5 = 5

root7 = 3

dist7 = 1

18.3 Afek-Kutten-Yung spanning tree algorithm 177

Now process 7 finds an inconsistency in its local variables: its root value is smaller
than its own ID. Therefore, it declares itself root: parent7 ←⊥, root7 ← 7, and
dist7 ← 0. As a result, processes 2 and 3 make process 7 their parent; next, process
1 makes process 3 its parent; and finally, process 5 makes process 1 its parent.

2 3 1

7

5

root2 = 7

dist2 = 1

root3 = 7

dist3 = 1

root1 = 7

dist1 = 2 dist5 = 3

root5 = 7

root7 = 7

dist7 = 0

The resulting configuration, depicted above, is stable.

We argue that the Arora-Gouda spanning tree algorithm is self-stabilizing, if only
fair computations are considered (see exercise 18.5). The key is that false root val-
ues, which are not an ID of any process in the network, will eventually disappear.
Namely, such false roots can survive only if there is a cycle of processes that all have
this root value. Distance values of processes on such a cycle will keep on increasing,
until one of them gets distance K and declares itself root. Then the cycle is broken,
and by fairness the cycle can be reestablished only a finite number of times. Hence,
the false root of the (former) cycle will eventually be eradicated. Since false roots
are guaranteed to disappear, the process with the largest ID in the network will even-
tually declare itself root. Then the network will converge to a spanning tree with this
process as the root.

To obtain a breadth-first search tree, in the Arora-Gouda algorithm, the case
where q �= parentp is a neighbor of p with distq < K has one extra subcase: if
rootp = rootq and distp > distq + 1, then parentp ← q and distp ← distq + 1.
That is, a process can select a new parent if it offers a shorter path to the root.

18.3 Afek-Kutten-Yung spanning tree algorithm

The Afek-Kutten-Yung self-stabilizing spanning tree algorithm for undirected net-
works does not require a known upper bound on the network size. Moreover, it
does not exhibit (unfair) infinite computations. Again, the process with the largest
ID eventually becomes the root of a spanning tree of the network.

Each process p again maintains the variables parentp, rootp, and distp. A pro-
cess p declares itself root, that is,

parentp ←⊥ rootp ← p distp ← 0,

if it does not yet consider itself root, and detects an inconsistency in the values of its
local variables, or between these values and those of its parent:

178 18 Self-Stabilization

– rootp ≤ p; or
– parentp =⊥; or
– parentp �=⊥, and parentp is not a neighbor of p or rootp �= rootparentp or

distp �= distparentp + 1.

Note that if there is a cycle in the spanning tree, then always a process on this
cycle will declare itself root. Namely, there is always some process p on this cycle
with distp �= distparentp + 1.

A process p that considers itself root can make a neighbor q its parent, if rootq is
larger than p. In case several neighbors of p have a root value greater than rootp, p
selects a neighbor q with the largest root value among all p’s neighbors. Before p can
make q its parent, p must wait until q’s component of the spanning tree has a proper
root. For otherwise processes could infinitely often join a component of the spanning
tree with a false root, as shown in the next example.

Example 18.5 Consider the initial following configuration.

0 1
dist0 = 0

root0 = 2 root1 = 2

dist1 = 1

Since dist0 �= dist1 + 1, process 0 declares itself root: parent0 ←⊥, root0 ← 0,
and dist0 ← 0. Next, since root0 < root1, process 0 makes process 1 its parent:
parent0 ← 1, root0 ← 2, and dist0 ← 2. Next, since dist1 �= dist0 + 1, process 1
declares itself root: parent1 ←⊥, root1 ← 1, and dist1 ← 0. Next, since root1 <
root0, process 1 makes process 0 its parent: parent1 ← 0, root1 ← 2, and dist1 ←
3. And so on.

Therefore, before p makes q its parent, if first sends a join request to q, which is
forwarded through the spanning tree to the root, which sends back an acknowledg-
ment to p via the spanning tree. When p receives this acknowledgment, p makes q its
parent, that is,

parentp ← q rootp ← rootq distp ← distq + 1.

Since we are in a shared-memory framework, join requests and acknowledg-
ments need to be encoded in shared variables; see the pseudocode in the appendix.
The path of a join request is remembered in local variables, so that the resulting ac-
knowledgment can follow this path in the reverse order. A process can be forwarding
and awaiting an acknowledgment for at most one join request at a time. As the en-
coding of join requests in shared variables is rather involved, they are presented in
the examples in a message-passing style.

Example 18.6 We revisit the initial configuration from example 18.5, but now with
join requests and acknowledgments. We consider one possible computation of the
Afek-Kutten-Yung algorithm.

Since dist0 �= dist1+1, process 0 declares itself root: parent0 ←⊥, root0 ← 0,
and dist0 ← 0. Next, since root0 < root1, process 0 sends a join request to process

18.3 Afek-Kutten-Yung spanning tree algorithm 179

1. Note that process 1 cannot forward this join request to its parent 0, because 0
is awaiting an acknowledgment. Next, since dist1 �= dist0 + 1, process 1 declares
itself root: parent1 ←⊥, root1 ← 1, and dist1 ← 0. Since process 1 is now a proper
root, it replies to the join request of process 0 with an acknowledgment. As a result,
process 0 makes process 1 its parent: parent0 ← 1, root0 ← 1, and dist0 ← 1. The
resulting spanning tree, with process 1 as root, is stable.

Join requests are forwarded only between processes of which the local variables
have consistent values; else there could be infinite computations, as shown in ex-
ample 18.7. And processes forward an acknowledgment only if they sent a corre-
sponding join request previously. This check avoids spurious acknowledgments due
to improper initial values of local variables.

Example 18.7 Given an undirected ring with three processes 0, 1, 2. Initially, pro-
cesses 0 and 1 consider themselves root, while process 2 has process 0 as parent,
considers the (nonexistent) process 3 the root, and has some distance value k.

0

1

2
root2 = 3
dist2 = kdist0 = 0

root0 = 0

dist1 = 0
root1 = 1

Since root2 > root1 (and root2 > root0), process 1 sends a join request to process 2.
Without the consistency check, process 2 would forward this join request to process
0. Since process 0 considers itself root, it would send back an acknowledgment to
process 1 (via process 2), and process 1 would make process 2 its parent and consider
process 3 the root. Next, since root2 �= root0, process 2 could make itself root.

0

1

2
root2 = 2
dist2 = 0dist0 = 0

root0 = 0

dist1 = k + 1
root1 = 3

Now we would have a (nearly) symmetrical configuration to the initial one. This
scenario could be repeated to obtain an infinite computation that never reaches a
stable configuration.

We argue that the Afek-Kutten-Yung spanning tree algorithm is self-stabilizing.
Each component in the network with a false root contains an inconsistency, so a
process in this component will declare itself root. Since join requests are forwarded
only between consistent processes, and processes can be involved in only one join
request at a time, each join request is eventually acknowledged. Join requests guar-
antee that processes only finitely often join a component with a false root, each time

180 18 Self-Stabilization

due to improper initial values of local variables. These observations together imply
that eventually false roots will disappear. Therefore, the process with the largest ID
in the network will declare itself root, and the network will converge to a spanning
tree with this process as the root.

Bibliographical notes

Dijkstra’s token ring originates from [24]; a proof that the ring is self-stabilizing for
K = N − 1 is presented in [31]. The Arora-Gouda algorithm stems from [5], and
the Afek-Kutten-Yung algorithm from [1].

Exercises

Exercise 18.1 Give a computation of Dijkstra’s token ring with N = K = 4 that
takes as long as possible before it reaches a correct configuration.

Exercise 18.2 Argue that from any configuration of Dijkstra’s token ring (with K ≥
N) it takes at most O(N2) transitions to reach a correct configuration.

Exercise 18.3 Given an undirected ring of three processes with IDs 0, 1, and 2. In
the initial configuration, parent0 = 1, parent1 = 2, and parent2 = 0; root0 =
root1 = root2 = 3; dist0 = 1, dist1 = 0, and dist2 = 2. Describe one possible
computation of the Arora-Gouda algorithm on this network, with K = 4.

Exercise 18.4 One part of the Arora-Gouda algorithm considers a neighbor q of
process p with distq < K. Show that if the side condition “with distq < K” were
omitted, then the algorithm might not stabilize.

Exercise 18.5 Give an unfair infinite computation of the Arora-Gouda algorithm
that never stabilizes. Let only one process perform events.

Exercise 18.6 Adapt the Arora-Gouda algorithm so that it no longer exhibits (unfair)
infinite computations.

Exercise 18.7 Describe one possible computation of the Afek-Kutten-Yung algo-
rithm on the network from exercise 18.3.

Exercise 18.8 Argue that in the Afek-Kutten-Yung algorithm, each join request
eventually results in an acknowledgment.

Exercise 18.9 Argue that the Afek-Kutten-Yung algorithm takes at most O(N2)
transitions to stabilize.

19

Online Scheduling

So far we have mostly ignored timing aspects. Logical clocks were used for ter-
mination detection and mutual exclusion, and local clocks with bounded drift were
employed to build a synchronous system in the presence of Byzantine processes. But
these were abstract representations of time. In this chapter we will consider jobs,
meaning units of work, that need to be scheduled and executed and are for this pur-
pose divided over the processors. These jobs have time constraints and resource re-
quirements.

One important application of real-time computing is computer graphics in video
games, where it is vital to produce and analyze images in real time, and where there
is very little time available per image. Typically, every image is then decomposed
into triangles, and special hardware is employed to generate the pixels inside each of
the triangles separately. Another important application is air traffic control to direct
planes on the ground and through the air, based on information from different sources
such as radars, weather stations, and pilots.

19.1 Jobs

The arrival time of a job is the moment in time it arrives at a processor, while the
release time of a job is the moment in time it becomes available for execution. In
many cases these two times will coincide, but sometimes it can be useful to postpone
the release time of a job, notably for avoiding resource competition (see section
19.3). The execution time of a job at a processor is the amount of time needed to
perform the job (assuming it executes alone and all resources are available).

We disregard the functional behavior of jobs, and focus on their deadlines, mean-
ing the time by which they must have been completed. This can be expressed as an
absolute deadline, that is, as a fixed moment in real time, or as a relative deadline,
that is, the maximum allowed time between arrival and completion of a job. A dead-
line can be hard, meaning that late completion is not allowed, or soft, meaning that
late completion is allowed but comes at some penalty.

182 19 Online Scheduling

A scheduler at a processor decides in which order jobs are performed at this
processor, and which resources they can claim. A scheduler aims to meet all hard
deadlines, meet soft deadlines as much as possible, and avoid deadlocks. Of course, a
job cannot be scheduled before its release time, and the total amount of time assigned
to a job should equal its (maximum) execution time.

In this chapter, the communication paradigm, message passing versus shared
memory, is not of the essence. In view of the fact that real-time scheduling plays
an important role in operating systems, it is placed in the shared-memory part.

A task is a set of related jobs. Three types of tasks can be distinguished:

• Periodic: such a task is known at the start of the system; the jobs have hard
deadlines.

• Aperiodic: such a task is executed in response to some external event; the jobs
have soft deadlines.

• Sporadic: such a task is executed in response to some external event; the jobs
have hard deadlines.

A periodic task is defined by three parameters:

• The release time r of the first periodic job.
• The period p, which is a periodic time interval, at the start of which a periodic

job is released.
• The execution time e of each periodic job.

For simplicity, we assume that the relative deadline of each periodic job equals its pe-
riod. The utilization of a periodic task (r, p, e) is e

p , representing the relative amount
of execution time on a processor that will be consumed by this periodic task. The
utilization at a processor is the sum of utilizations of its periodic tasks. Clearly,
scheduling of the periodic tasks at a processor is possible only if its utilization does
not exceed one.

Example 19.1 Consider the periodic tasks T1 = (1, 2, 1) and T2 = (0, 3, 1) at a
processor. The utilization at the processor is 1

2 + 1
3 = 5

6 . The periodic jobs can be
executed as follows.

J2 J1 J2 J1

0 1 2 3 4 5 6

J1
time axis

The conflict at time 3, when periodic jobs of both T1 and T2 are released, must be
resolved by some scheduler. In this example, T1 is given priority over T2. Different
schedulers will be discussed in section 19.2.

19.2 Schedulers

An offline scheduler determines the order in which jobs will be executed beforehand,
typically with an algorithm for an NP-complete graph problem. In such schedulers,

19.2 Schedulers 183

time is usually divided into regular time intervals called frames, and in each frame,
a predetermined set of periodic tasks is executed. Jobs may be sliced into subjobs to
accommodate frame length. Offline scheduling is conceptually relatively simple, but
cannot cope so well with jitter (that is, imprecise release and execution times), extra
workload, nondeterminism, and system modifications.

Here we focus on online schedulers, where the schedule is computed at run-time.
Scheduling decisions are taken when jobs are released, when aperiodic/sporadic
tasks arrive, when jobs are completed, or when resources are required or released.
Released jobs are placed in priority queues, ordered by for instance release time,
execution time, period of the task, deadline, or slack. The latter means the available
idle time of a job until the next deadline. For example, if at time 2 a job with a
deadline at time 6 still needs three time units to complete, then its slack at time 2 is
(6− 2)− 3 = 1.

For simplicity, we consider aperiodic and sporadic jobs instead of tasks. Such
jobs are offered to processors at run-time. Sporadic jobs are only accepted at a pro-
cessor if they can be completed in time, without causing the processor to miss hard
deadlines of other jobs. We assume that aperiodic jobs are always accepted and are
performed such that periodic and accepted sporadic jobs do not miss their deadlines.
Sporadic and aperiodic jobs that need to be executed at a processor are placed in job
queues. The queueing discipline of aperiodic jobs tries to minimize the penalty as-
sociated to missed soft deadlines (for example, minimize the number of missed soft
deadlines, or the average tardiness, being the amount of time by which an aperiodic
job misses its deadline).

Unless stated otherwise, we assume that there is no resource competition and
that jobs are preemptive, meaning that they can be suspended at any time in their
execution.

Scheduling periodic jobs

A popular scheduler for periodic tasks is the rate-monotonic scheduler, which gives
periodic jobs with a shorter period a higher priority. A strong point of this scheduler
is that the static priority at the level of tasks makes its schedules relatively easy
to compute and predict. The idea behind the rate-monotonic scheduler is that if a
periodic job J1 has a shorter period than a periodic job J2, then the relative deadline
of J1 is shorter than the relative deadline of J2. However, it may be the case that J2
has been released before J1, in which case Js has an earlier deadline than J1. As
a result, the rate-monotonic scheduler is not optimal, in the sense that it may cause
periodic jobs to miss their deadline, even in cases where the utilization of the periodic
tasks at a processor is less than one.

Example 19.2 Consider a single processor, with periodic tasks T1 = (0, 4, 2) and
T2 = (0, 6, 3). Note that utilization is 2

4 + 3
6 = 1. The rate-monotonic scheduler,

which gives jobs from T1 a higher priority than jobs from T2, schedules the periodic
jobs as follows.

184 19 Online Scheduling

0 1 2 3 4 5 6 7 128 9 10 11

J1 J1 J1J2 J2 J2 J2

Note that T2 is preempted by T1 at times 4 and 8. The first periodic job of T2 misses
its deadline at time 6.

The earliest deadline first scheduler gives a job a higher priority if its deadline is
earlier. In case of preemptive jobs and no competition for resources, this scheduler
is optimal, in the sense that if utilization at a processor does not exceed one, then
periodic jobs will be scheduled in such a way that no deadlines are missed.

Example 19.3 Consider the setting of example 19.2: a single processor, with peri-
odic tasks T1 = (0, 4, 2) and T2 = (0, 6, 3). The earliest deadline first scheduler may
schedule the periodic jobs as follows.

0 1 2 3 4 5 6 7 128 9 10 11

J1 J1J2 J1J2

No deadlines are missed. Note that at time 8 it would also be possible to let J1
preempt J2, because both jobs have their deadline at time 12.

The least slack-time first scheduler gives a job a higher priority if it has less slack.
This scheduler is also optimal: if utilization at a processor does not exceed one, then
periodic jobs will be scheduled in such a way that no deadlines are missed.

Slack of a job gives precise information how much time can be spent on other
jobs without this job missing its deadline. However, it is computationally expensive.
Another drawback of the least slack-time first scheduler is that priority between jobs
is dynamic, in the sense that it may change over time. Continuous scheduling deci-
sions would lead to so-called context switch overhead in case of two jobs with the
same amount of slack, because they would interrupt each other repeatedly.

In case of nonpreemptive jobs, or resource competition, it may be impossible
to schedule periodic jobs in such a way that no deadlines are missed, even in cases
where utilization at a processor is (much smaller than) one. For instance, suppose
there are two nonpreemptive periodic tasks (0, 1, e) and (0, p, 2). No matter how
small e > 0 and how large p are chosen, as soon as a job of the second periodic task
is executed, a job of the first periodic task will miss its deadline. The same holds
if these periodic tasks are preemptive, but they both require the same resource from
start to finish. Moreover, nonpreemptive jobs or resource competition can give rise
to so-called scheduling anomalies: shorter execution times may lead to violation of
deadlines. This is shown in the next example.

Example 19.4 Let three nonpreemptive jobs be executed at the same processor: job
J1 is released at time 0 with a deadline at time 2 and execution time 1; job J2 is
released at time 1 with a deadline at time 5 and execution time 2; and job J3 is

19.2 Schedulers 185

released at time 2 with a deadline at time 3 and execution time 1. The earliest deadline
first and least slack-time first schedulers both schedule these three jobs as follows.

0 1 2 3

J1 J2 J3

4

Job J3 misses its deadline at time 3.
If the execution time of J1 is increased from 1 to 2, then the earliest deadline first

and least slack-time first schedulers both schedule these three jobs as follows.

0 1 2 3 4 5

J3J1 J2

In this case no deadlines are missed.

Scheduling aperiodic jobs

We assume that aperiodic jobs are always accepted for execution at a processor and
that they are executed in such a way that periodic and accepted sporadic jobs do not
miss their hard deadlines. The challenge is to execute aperiodic jobs in such a way
that they adhere to their soft deadlines as much as possible.

A straightforward solution is the background server, which schedules aperiodic
jobs only in idle time, when no periodic and sporadic jobs are available for execution.
The drawback is that this server may needlessly let an aperiodic job miss its deadline.

Example 19.5 Let aperiodic job A have execution time 1 and a deadline one time
unit away, while sporadic job S has execution time 1 and a deadline ten time units
away. Although A could easily be scheduled before S, the background server would
schedule S first, causing A to miss its deadline.

In the slack stealing server, an aperiodic job may be executed as long as the
processor has slack, meaning that it could idle without causing periodic or sporadic
jobs to miss their deadline. The drawback of this server is that the amount of slack
of a processor is difficult to compute, because it changes over time, and in practice
one would have to take jitter into account.

Example 19.6 Suppose that a processor is executing periodic tasks T1 = (0, 2, 1
2)

and T2 = (0, 3, 1
2), and that aperiodic jobs are available for execution at this pro-

cessor in the time interval [0, 6]. The following graph depicts how, with the slack
stealing server, the amount of slack of the processor changes over time.

186 19 Online Scheduling

2 3 4 5 610

1

0.5

0

1.5

In the time intervals 〈0, 1 1
2 〉, 〈2, 2 1

2 〉, 〈3, 3 1
2 〉, and 〈4, 5〉, aperiodic jobs are executed.

A periodic job from T1 is executed in 〈1 1
2 , 2〉, 〈3 1

2 , 4〉, and 〈5, 5 1
2 〉 and a periodic job

from T2 in 〈2 1
2 , 3〉 and 〈5 1

2 , 6〉.
We discuss three more servers, which are based on utilization. Suppose that pe-

riodic tasks Tk = (rk, pk, ek) for k = 1, . . . , n are being executed at the processor
under consideration. For simplicity, we ignore sporadic jobs.

The polling server carries two parameters ps and es: in each period of length ps,
the first es time units can be used to execute aperiodic jobs. The polling server works
correctly if

n∑
k=1

ek
pk

+
es
ps

≤ 1. (19.1)

For the correctness of the polling server it is essential that in a period ps, aperiodic
jobs are executed only in the first es time units; see example 19.7. A drawback of
the polling server is that aperiodic jobs released just after the first es time units of a
period ps may be delayed needlessly.

The deferrable server is similar to the polling server, but allows aperiodic jobs
to be executed for es time units in the entire period ps, so not only at the start. The
following example shows that for the deferrable server, criterion (19.1) for the values
ps and es would be incorrect.

Example 19.7 Consider a processor with one periodic task T = (2, 5, 3 1
3), and let

ps = 3 and es = 1. Note that criterion (19.1) is satisfied.
Let an aperiodic job A with execution time 2 arrive at time 2. The deferrable

server would allow A to execute at the end of the first period ps, from time 2 until
time 3, and at the start of the second period ps from time 3 until time 4. As a result,
the first periodic job, which is released at time 2, can start execution only at time 4,
until time 7 1

3 . So it misses its deadline at time 7.

A drawback of the deferrable server is that it is not easy to determine optimal
values for ps and es.

The total bandwidth server fixes a utilization rate ũs for aperiodic jobs, such that

n∑
k=1

ek
pk

+ ũs ≤ 1.

19.2 Schedulers 187

When the queue of aperiodic jobs gets a new head, a deadline d is determined for
this head as follows. If, at a time t, either a job arrives at the empty aperiodic queue,
or an aperiodic job completes and the tail of the aperiodic queue is nonempty, then

d ← max{d, t}+ e

ũs

where e denotes the execution time of the new head of the aperiodic queue. Initially,
d = 0.

Aperiodic jobs can now be treated in the same way as periodic jobs, by the ear-
liest deadline first scheduler. Periodic jobs are guaranteed to meet their deadlines (in
the absence of sporadic jobs), and aperiodic jobs meet the deadlines assigned to them
(which may differ from their actual soft deadlines).

Example 19.8 Consider a processor with two periodic tasks T1 = (0, 2, 1) and T2 =
(0, 3, 1). We fix ũs =

1
6 .

0 1 2 3 4 5 6 7 8 9 10 11 12

J1 J1 J1J2 J2 J2A1 J1 A2 A3J1 J2J1

– Aperiodic job A1, released at time 1 with execution time 1
2 , gets (at 1) deadline

1 + 3 = 4.
– Aperiodic job A2, released at time 2 with execution time 2

3 , gets (at 2 1
2) deadline

4 + 4 = 8.
– Aperiodic job A3, released at time 3 with execution time 2

3 , gets (at 6 1
6) deadline

8 + 4 = 12.

Scheduling sporadic jobs

We now present an acceptance test for sporadic jobs. A sporadic job can be accepted
at a processor only if it can be executed before its (hard) deadline, without causing
the violation of deadlines of periodic and accepted sporadic jobs at this processor.

A sporadic job with deadline d and execution time e that is offered to a processor
at time t, is accepted if utilization of the periodic and accepted sporadic jobs in the
time interval [t, d] is never more than 1 − e

d−t . If accepted, utilization in [t, d] is
increased with e

d−t . Periodic and accepted sporadic jobs can be scheduled according
to the earliest deadline first scheduler.

Example 19.9 Consider a processor with one periodic task T = (0, 2, 1). Utilization
of this periodic task over the entire time domain is 1

2 .

– Sporadic job S1 with execution time 2 and a deadline 6 is offered to the processor
at time 1. S1 is accepted, and utilization in [1, 6] is increased to 1

2 + 2
5 = 9

10 .
– Sporadic job S2 with execution time 2 and a deadline 20 is offered to the proces-

sor at time 2. S2 is rejected, because utilization in the time interval [2, 6] would
increase beyond 1.

188 19 Online Scheduling

– Sporadic job S3 with execution time 1 and a deadline 13 is offered to the proces-
sor at time 3. S3 is accepted, and utilization in [3, 6] is increased to 9

10 +
1
10 = 1,

and utilization in [6, 13] is increased to 1
2 + 1

10 = 3
5 .

0 1 2 3 4 5 6 7 8 9 10 11 12

0.5

0

1

1413

The acceptance test may reject schedulable sporadic jobs. In particular, sporadic
job S2 in the previous example is schedulable, but it is nevertheless rejected.

The total bandwidth server can be integrated with the acceptance test for sporadic
jobs, for example, by making the allowed utilization rate ũs for the total bandwidth
server dynamic.

19.3 Resource access control

So far we have ignored competition for resources, such as a block of memory. In this
section we consider resource units that can be requested by jobs during their exe-
cution, and are allocated to jobs in a mutually exclusive fashion. When a requested
resource is refused, the job is preempted.

One danger of resource sharing is that it may give rise to deadlock, when two
jobs block each other because they hold a different resource, and these jobs require
both resources. A second danger is that a high-priority job J may be blocked by a
sequence of low-priority jobs, when J requires a resource that is being held by a job
with a very low priority. We give examples of these two situations.

Example 19.10 Consider two jobs J1 and J2, where J1 has a higher priority than
J2, and two resources R and R′.

First, J2 is executing, and claims R. Then J1 arrives at the same processor, pre-
empts J2, starts executing, and claims R′. Next, J1 requires R; since this resource
is held by J2, J1 is preempted and J2 continues its execution. Next, J2 requires R′;
since this resource is held by J1, J2 is preempted. Now J1 is blocked because J2
holds R, while J2 is blocked because J1 holds R′. So J1 and J2 are deadlocked.

Example 19.11 Consider jobs J0, J1, . . . , Jk, with as priorities J0 > J1 > · · · >
Jk. There is a resource R, which will be required by both J0 and Jk.

First, Jk is executing, and claims R. Then Jk−1 arrives at the same processor,
preempts Jk, and starts executing. Next, Jk−2 arrives at the same processor, preempts
Jk−1, and starts executing. This pattern is repeated, until finally J0 arrives at the
same processor, preempts J1, and starts executing. Next, J0 requires R; since this

19.3 Resource access control 189

resource is held by Jk, J0 is preempted, and J1 (which has the highest priority of
the available jobs) continues its execution. When J1 is completed, J2 continues its
execution; upon completion of J2, J3 continues its execution, and so on, until finally
Jk continues its execution, completes, and releases R. Only then J0 can claim R and
continue its execution.

Jk Jk−1 J0 J1J1 Jk J0Jk−1

Priority inheritance makes blocking of a high-priority job J by a sequence of
low-priority jobs less likely. The idea is that when a job J1 is blocked because it
requires a resource that is held by a job J2, and J1 has a higher priority than J2, then
J2 inherits the priority of J1 as long as it is blocking the execution of J1.

Example 19.12 We revisit example 19.11, with priority inheritance. When J0 re-
quires R, Jk inherits the priority of Jk. So instead of J1, now Jk continues its execu-
tion. When Jk completes and releases R, J0 can claim R and continue its execution.

Jk Jk−1 J0J1 J1J0Jk Jk−1

However, with priority inheritance a deadlock can still occur. For instance, pri-
ority inheritance has no effect on the execution discussed in example 19.10. Such
deadlocks can be avoided by priority ceiling. The priority ceiling of a resource R
at a time t is the highest priority of (known) jobs that will require R at some time
≥ t. The priority ceiling of a processor at a time t is the highest priority ceiling of
resources that are in use at time t. The priority ceiling of a processor has a special
bottom value Ω when no resources are in use. In case of priority ceiling, from the
arrival of a job at a processor, this job is not released until its priority is higher than
the priority ceiling of the processor.

The idea behind priority ceiling is that a job J is released only if all the resources
it will require during its execution are not in use. Because otherwise at the arrival
of J the priority ceiling of the processor increases to the priority of J , if this pri-
ority ceiling is not at or beyond this level already. Of course, this approach works
properly only if all the resources a job will require during its execution are always
known beforehand. If priorities of jobs do not change over time (as is the case for the
earliest deadline first scheduler, but not for the least slack-time first scheduler), then
deadlocks like the one in example 19.10 cannot occur.

Example 19.13 We revisit example 19.10, with priority ceiling. When J1 arrives at
the processor, the priority ceiling is increased to the priority of J1, because J1 will
require R, and this resource is in use by J2. So J1 is not yet released. When J2
completes and releases R, the priority ceiling goes down to Ω, so that J1 is released
and starts executing.

With priority ceiling, blocking of a high-priority job by a sequence of lower-
priority jobs becomes less likely.

190 19 Online Scheduling

Example 19.14 We revisit example 19.11, with priority ceiling, under the assump-
tion that the future arrival of J0 is known from the start. Since J0 will require R, and
Jk holds R, the priority ceiling becomes the priority of J0. Therefore, Jk−1 is not re-
leased at its arrival, and Jk continues its execution. When Jk completes and releases
R, the priority ceiling drops to Ω, so that jobs are released. When J0 arrives, it can
claim R, and start executing straightaway.

Jk−2 J1Jk J1J0 Jk−2 Jk−1

Priority ceiling has no effect on jobs that have been released. For instance, if in
example 19.11 the arrival of J0 is known only at its arrival, priority ceiling does not
help. Therefore, priority inheritance tends to be imposed on top of priority ceiling.

Priority ceiling can be extended to a setting with multiple units of the same re-
source type. Then the definition of priority ceiling needs to be adapted as follows.
The priority ceiling of a resource R with k free units at a time t is the highest priority
level of known jobs that require more than k units of R at some time ≥ t.

Bibliographical notes

The slack stealing server originates from [48], the deferrable server from [74], and
the total bandwidth server in [73]. Priority inheritance was introduced in [71], and
priority ceiling in [65].

Exercises

In these exercises, all jobs are assumed to be preemptive.

Exercise 19.1 [50] Consider a system with two processors. Suppose jobs J1, J2, and
J3 are released at time 0, with execution times 1, 1, and 2, and deadlines at times 1,
2, and 3, respectively.

(a) Let jobs J4 and J5 be released at time 2, both with execution time 1 and a dead-
line at time 3.

(b) Let job J4 be released at time 1, with execution time 2 and a deadline at time 3.
(In this case there is no J5.)

In both cases, give a schedule such that all deadlines are met.

Exercise 19.2 [50] Which of the following collections of periodic tasks are schedu-
lable on one processor by the earliest deadline first scheduler? And which ones by
the rate-monotonic scheduler?

(a) (0, 8, 4), (0, 10, 2), (0, 12, 3).
(b) (0, 8, 4), (0, 12, 4), (0, 20, 4).

Exercises 191

(c) (0, 8, 3), (0, 9, 3), (0, 15, 3).

Exercise 19.3 Consider a processor with one periodic task (0, 5, 3 1
3), and with the

earliest deadline first scheduler.

(a) Given a polling server with ps = 3, what is the maximum value for es?
(b) Given a deferrable server with ps = 3, what is the maximum value for es?
(c) Given a total bandwidth server, what is the maximum utilization rate ũs?
(d) Suppose aperiodic jobs A1, A2, and A3 arrive at times 3, 5, and 13, with execu-

tion times 1, 2, and 1, respectively. Explain how these aperiodic jobs are executed
in case of the deferrable server (with es maximal) and the total bandwidth server
(with ũs maximal).

Exercise 19.4 Suppose that the total bandwidth server is adapted as follows. When
at time t an aperiodic job (with execution time e) arrives at the aperiodic queue while
it is empty, d ← t+ e

ũs
. Give an example to show that then, with the earliest deadline

first scheduler, periodic jobs may miss their deadlines.

Exercise 19.5 Consider a processor with one periodic task (0, 3, 1). Suppose spo-
radic jobs S1, S2, S3, and S4 arrive at times 0, 1, 3, and 6, with execution times 1, 3,
1, and 2, and with deadlines at times 1, 12, 7, and 14, respectively. Explain which of
these jobs pass the acceptance test.

Exercise 19.6 Give an example where the acceptance test for sporadic jobs rejects a
sporadic job at a time t, while it accepts this same job at a time t′ > t.

Exercise 19.7 Suggest an adaptation of the acceptance test for sporadic jobs that
accepts more sporadic jobs (without computing slack). Give an example of a sporadic
job that is accepted by your test, but not by the original test. Does your test accept
all schedulable sporadic jobs?

Exercise 19.8 Jobs J1 and J2 arrive at times 1 and 0, with execution times 1 and 2,
respectively. Let J1 and J2 use resource R for their entire execution, and J2 resource
R′ for the last time unit of its execution.

(a) Job J3 arrives at time 1, with execution time 100. Let J1 > J3 > J2. Explain
how J1, J2, J3 are executed with and without priority inheritance.

(b) Job J4 arrives at time 1, with execution time 2. Let J4 use resource R′ for
its entire execution and resource R for the last time unit of its execution. Let
J1 > J4 > J2. Explain how J1, J2, J4 are executed with and without priority
inheritance.

Exercise 19.9 Let preemptive jobs J1, J2, and J3 arrive at times 2, 1, and 0, respec-
tively, with execution time 2. Let the priorities be J1 > J2 > J3. Let J1 and J3 use
resource R for their entire execution. The jobs are executed using priority ceiling.

192 19 Online Scheduling

(a) Explain how the three jobs are executed if the arrival of J1 is known from the
start.

(b) Explain how the three jobs are executed if the arrival of J1 is not known before
time 2. Consider the cases with and without priority inheritance.

Exercise 19.10 Give an example to show that with priority ceiling, a job can still be
blocked by a sequence of lower-priority jobs, even if there is priority inheritance and
the arrival of all jobs is known from the start.

Exercise 19.11 Give an example to show that a deadlock can occur if priority ceiling
is applied in combination with the least slack-time first scheduler. (The resources a
job requires during its execution are assumed to be known beforehand.)

Pseudocode Descriptions

Pseudocode descriptions are presented for a considerable number of distributed al-
gorithms discussed in the main body of this book. Several algorithms are excluded
here, either because their pseudocode description is trivial or very similar to another
algorithm that is included, or because the main body contains a description that re-
sembles the pseudocode.

Each piece of pseudocode is presented for a process p or pi; its local variables
are subscripted with p or i, respectively. We use Neighborsp to denote the set of
neighbors of process p in the network, and Processes for the set of processes in the
network.

Each pseudocode description starts with a variable declaration section. Let bool,
nat, int, and real denote the data type of Booleans, natural numbers, integers, and
reals, with as default initial value false and 0 (for the latter three). The operations
∧, ∨, and ¬ on Booleans denote conjunction, disjunction, and negation, respectively.
The data type dist, representing distance, consists of the natural numbers extended
with infinity ∞, where ∞+ d = d+∞ = ∞ for all distance values d, and d < ∞
for all d �= ∞; its default initial value is ∞.

The data type of processes in the network, proc, has as default initial value ⊥
(i.e., undefined). The data types mess-queue and proc-queue represent FIFO queues
of basic messages and processes, respectively. Likewise, mess-set, proc-set, proc-

nat-set, proc-real-nat-set, and proc-dist-set represent sets of basic messages, pro-
cesses, pairs of a process and a natural number, triples of a process, a natural number,
and a real value, and pairs of a process and a distance value, respectively. Variables
containing queues or sets have as default initial value ∅, that is, empty. There are
three operations on queues: head produces the head and tail the tail of the queue
(on the empty queue these operations are undefined), while append(Q, e) appends
element e at the end of queue Q.

We recall that assignment of a new value to a variable is written as ←. Equality
between two data elements, d1 = d2 (or between two sets, S1 = S2), represents a
Boolean value, which is true if and only if the two elements (or sets) are equal. We
also recall that the network topology is supposed to be strongly connected. In the
pseudocode it is assumed that the network size N is greater than one.

194 Pseudocode Descriptions

A process is supposed to interrupt the execution of a procedure call (under a
boxed text, such as “If p receives [...]”) only if it has to wait for an incoming message,
or in case of a while b do statement end while construct after performing statement
if the Boolean b is true, or when it enters its critical section.

In general, pseudocode tends to be error-prone, because on one hand it is con-
densed and intricate, while on the other hand it has never been executed. I welcome
any comments on the pseudocode descriptions, as well as on the main body of the
book.

Chandy-Lamport snapshot algorithm

The Boolean variable recordedp in the following pseudocode is set (to true) when
p takes a local snapshot of its state. For each incoming channel c of p, the Boolean
variable markerp[c] is set when a marker message arrives at p through c, and the
queue statep[c] keeps track of the basic messages that arrive through channel c after
p has taken its local snapshot and before a marker message arrives through c.

bool recordedp, markerp[c] for all incoming channels c of p;
mess-queue statep[c] for all incoming channels c of p;

If p wants to initiate a snapshot

perform procedure TakeSnapshotp;

If p receives a basic message m through an incoming channel c0

if recordedp = true and markerp[c0] = false then

statep[c0] ← append(statep[c0],m);
end if

If p receives 〈marker〉 through an incoming channel c0

perform procedure TakeSnapshotp;
markerp[c0] ← true;
if markerp[c] = true for all incoming channels c of p then

terminate;
end if

Procedure TakeSnapshotp

if recordedp = false then

recordedp ← true;
send 〈marker〉 into each outgoing channel of p;
take a local snapshot of the state of p;

end if

Lai-Yang snapshot algorithm

recordedp is set when p takes a local snapshot of its state. The set Statep[qp] keeps
track of the basic messages that arrive at p through its incoming channel qp after p

Lai-Yang snapshot algorithm 195

has taken its local snapshot and that were sent by q before it took its local snapshot.
The variable counterq[qp] counts how many basic messages process q has sent into
its outgoing channel qp before taking its local snapshot. Right before taking its local
snapshot, q sends the control message 〈presnap, counterq[qp] + 1〉 to p (the +1
is present because the control message itself is also counted), and p stores the value
within this message in the variable counterp[qp]. Finally, p terminates when it has
received a control message 〈presnap, k〉 and k − 1 basic messages with the tag
false through each incoming channel qp.

bool recordedp;
nat counterp[c] for all channels c of p;
mess-set Statep[c] for all incoming channels c of p;

If p wants to initiate a snapshot

perform procedure TakeSnapshotp;

If p sends a basic message m into an outgoing channel c0

send 〈m, recordedp〉 into c0;
if recordedp = false then

counterp[c0] ← counterp[c0] + 1;
end if

If p receives 〈m, b〉 through an incoming channel c0

if b = true then

perform procedure TakeSnapshotp;
else if recordedp = true then

Statep[c0] ← Statep[c0] ∪ {m};
if |Statep[c]|+ 1 = counterp[c] for all incoming channels c of p then

terminate;
end if

end if

If p receives 〈presnap, �〉 through an incoming channel c0

counterp[c0] ← �;
perform procedure TakeSnapshotp;
if |Statep[c]|+ 1 = counterp[c] for all incoming channels c of p then

terminate;
end if

Procedure TakeSnapshotp

if recordedp = false then

recordedp ← true;
send 〈presnap, counterp[c] + 1〉 into each outgoing channel c;
take a local snapshot of the state of p;

end if

196 Pseudocode Descriptions

Cidon’s depth-first search algorithm

parentp is the parent of p in the spanning tree rooted at the initiator (or ⊥ if p has
no parent). infop is set when p sends the token for the first time, and tokenp[q] is set
when p is certain that neighbor q will receive or has received the token. In forwardp

the neighbor is stored to which p forwarded the token last.

bool infop, tokenp[r] for all r ∈ Neighborsp;
proc parentp, forwardp;

If p is the initiator

perform procedure ForwardTokenp;

If p receives 〈info〉 from a neighbor q

if forwardp �= q then

tokenp[q] ← true;
else

perform procedure ForwardTokenp;
end if

If p receives 〈token〉 from a neighbor q

if forwardp =⊥ then

parentp ← q; tokenp[q] ← true;
perform procedure ForwardTokenp;

else if forwardp = q then

perform procedure ForwardTokenp;
else

tokenp[q] ← true;
end if

Procedure ForwardTokenp

if {r ∈ Neighborsp | tokenp[r] = false} �= ∅ then

choose a q from this set, and send 〈token〉 to q;
forwardp ← q; tokenp[q] ← true;
if infop = false then

send 〈info〉 to each r ∈ Neighborsp\{q, parentp};
infop ← true;

end if

else if parentp �=⊥ then

send 〈token〉 to parentp;
else

decide;
end if

Echo algorithm 197

Tree algorithm

parentp is the parent of p in the spanning tree. receivedp[q] is set when p receives a
wave message from neighbor q. Messages are included to inform all processes of the
decision.

bool receivedp[r] for all r ∈ Neighborsp;
proc parentp;

Initialization of p

perform procedure SendWavep;

If p receives 〈wave〉 from a neighbor q

receivedp[q] ← true;
perform procedure SendWavep;

Procedure SendWavep

if |{r ∈ Neighborsp | receivedp[r] = false}| = 1 then

send 〈wave〉 to the only q ∈ Neighborsp with receivedp[q] = false;
parentp ← q;

else if |{r ∈ Neighborsp | receivedp[r] = false}| = 0 then

decide;
send 〈info〉 to each r ∈ Neighborsp\{parentp};

end if

If p receives 〈info〉 from parentp

send 〈info〉 to each r ∈ Neighborsp\{parentp};

Echo algorithm

parentp is the parent of p in the spanning tree rooted at the initiator. The variable
receivedp counts how many wave messages have arrived at p.

nat receivedp;
proc parentp;

If p is the initiator

send 〈wave〉 to each r ∈ Neighborsp;

If p receives 〈wave〉 from a neighbor q

receivedp ← receivedp + 1;
if parentp =⊥ and p is a noninitiator then

parentp ← q;
if |Neighborsp| > 1 then

send 〈wave〉 to each r ∈ Neighborsp\{q};
else

198 Pseudocode Descriptions

send 〈wave〉 to q;
end if

else if receivedp = |Neighborsp| then

if parentp �=⊥ then

send 〈wave〉 to parentp;
else

decide;
end if

end if

Shavit-Francez termination detection algorithm

parentp is the parent of p in a tree in the forest, and ccp keeps track of (or better,
estimates from above) the number of children of p in its tree. activep is set when p
becomes active, and reset when p becomes passive.

bool activep;
nat ccp;
proc parentp;

If p is an initiator

activep ← true;

If p sends a basic message

ccp ← ccp + 1;

If p receives a basic message from a neighbor q

if activep = false then

activep ← true; parentp ← q;
else

send 〈ack〉 to q;
end if

If p receives 〈ack〉
ccp ← ccp − 1;
perform procedure LeaveTreep;

If p becomes passive

activep ← false;
perform procedure LeaveTreep;

Procedure LeaveTreep

if activep = false and ccp = 0 then

if parentp �=⊥ then

send 〈ack〉 to parentp;
parentp ←⊥;

else

Weight-throwing termination detection algorithm 199

start a wave, tagged with p;
end if

end if

If p receives a wave message

if activep = false and ccp = 0 then

act according to the wave algorithm;
in case of a decide event, call Announce;

end if

Weight-throwing termination detection algorithm

activep is set when p becomes active, and reset when p becomes passive. weightp
contains the weight at p, and total the total amount of weight in the network. The
constant minimum , a real value between 0 and 1

2 , represents the minimum allowed
weight at a process. In case of underflow, a noninitiator informs the initiator that it has
added one extra unit of weight to the system, and waits for an acknowledgment from
the initiator. For simplicity, we assume that there is an undirected channel between
the initiator and every other process in the network.

bool activep;
real weightp, total only at the initiator;

If p is the initiator

activep ← true; weightp ← 1; total ← 1;

If p sends a basic message m to a neighbor q

if 1
2
·weightp < minimum then

if p is a noninitiator then

send 〈more-weight〉 to the initiator, to ask for extra weight;
wait for an acknowledgment from the initiator to arrive;

else

total ← total + 1;
end if

weightp ← weightp + 1;
end if

send 〈m, 1
2
·weightp〉 to q;

weightp ← 1
2
·weightp;

If p receives a basic message 〈m,w〉
activep ← true; weightp ← weightp + w;

If p becomes passive

activep ← false;
if p is a noninitiator then

send 〈return-weight,weightp〉 to the initiator;

200 Pseudocode Descriptions

weightp ← 0;
else if total = weightp then

call Announce;
end if

If initiator p receives 〈more-weight〉 from a process q

total ← total + 1;
send an acknowledgment to q;

If initiator p receives 〈return-weight, w〉
weightp ← weightp + w;
if activep = false and total = weightp then

call Announce;
end if

Rana’s termination detection algorithm

activep is set when p becomes active, and reset when p becomes passive. clockp

represents the clock value at p, and unackp the number of unacknowledged basic
messages that were sent by p.

bool activep;
nat clockp, unackp;

If p is an initiator

activep ← true;

If p sends a basic message

unackp ← unackp + 1;

If p receives a basic message from a neighbor q

activep ← true;
send 〈ack, clockp〉 to q;

If p receives 〈ack, t〉
clockp ← max{clockp, t+ 1}; unackp ← unackp − 1;
if activep = false and unackp = 0 then

start a wave, tagged with p and clockp;
end if

If p becomes passive

activep ← false;
if unackp = 0 then

start a wave, tagged with p and clockp;
end if

If p receives a wave message tagged with q and t

Safra’s termination detection algorithm 201

if activep = false and unackp = 0 and clockp ≤ t then

act according to the wave algorithm, for the wave tagged with q and t;
in case of a decide event, call Announce;

end if

clockp ← max{clockp, t};

Safra’s termination detection algorithm

activep is set when p becomes active, and reset when p becomes passive. blackp

is set when p receives a basic message, and reset when p forwards the token. More-
over, the initiator of the control algorithm at the start sets this variable, to make sure it
sends out the token when it becomes passive for the first time. As long as p is holding
the token, tokenp is set. When p sends/receives a basic message, mess-counterp is
increased/decreased by one. The variable token-counterp is used to store the counter
value of the token. For simplicity, we assume that the initiator of the control algo-
rithm is also an initiator of the basic algorithm.

bool activep, tokenp, blackp;
int mess-counterp, token-counterp;

If p is the initiator of the control algorithm

tokenp ← true; blackp ← true;

If p is an initiator of the basic algorithm

activep ← true;

If p sends a basic message

mess-counterp ← mess-counterp + 1;

If p receives a basic message

activep ← true; blackp ← true; mess-counterp ← mess-counterp − 1;

If p becomes passive

activep ← false;
perform procedure TreatTokenp;

If p receives 〈token, b, k〉
tokenp ← true; blackp ← blackp ∨ b; token-counterp ← k;
perform procedure TreatTokenp;

Procedure TreatTokenp

if activep = false and tokenp = true then

if p is a noninitiator then

forward 〈token, blackp,mess-counterp + token-counterp〉;
tokenp ← false; blackp ← false;

else if blackp = true or mess-counterp + token-counterp �= 0 then

202 Pseudocode Descriptions

send 〈token, false, 0〉 on a round trip through the network;
tokenp ← false; blackp ← false;

else

call Announce;
end if

end if

Chandy-Misra routing algorithm

parentp is the parent of p in the spanning tree rooted at the initiator, and distp the
distance value of p toward the initiator.

dist distp;
proc parentp;

If p is the initiator

distp ← 0;
send 〈dist, 0〉 to each r ∈ Neighborsp;

If p receives 〈dist, d〉 from a neighbor q

if d+ weight(pq) < distp then

distp ← d+ weight(pq); parentp ← q;
send 〈dist, distp〉 to each r ∈ Neighborsp\{q};

end if

Merlin-Segall routing algorithm

parentp is the parent of p in the spanning tree rooted at the initiator, and distp the
distance value of p toward the initiator. In new -parentp the process is stored that
sent the message to p on which the current value of distp is based; at the end of a
round, the value of new -parentp is passed on to parentp. In counterp, p keeps track
of how many messages it has received in the current round.

nat counterp;
dist distp;
proc parentp, new -parentp;

If p is the initiator

distp ← 0;
initiate a wave that determines a spanning tree of the network,
captured by values of parentr for all r ∈ Processes , with p as root;
wait until this wave has terminated;
for k = 1 to N − 1 do

send 〈dist, 0〉 to each r ∈ Neighborsp;
while counterp < |Neighborsp| do

Toueg’s routing algorithm 203

wait for a message 〈dist, d〉 to arrive;
counterp ← counterp + 1;

end while

counterp ← 0;
end for

If p is a noninitiator

take part in the wave, and provide parentp with the resulting parent value;
for k = 1 to N − 1 do

while counterp < |Neighborsp| do

wait for a message 〈dist, d〉 from a q ∈ Neighborsp;
counterp ← counterp + 1;
if d+ weight(pq) < distp then

distp ← d+ weight(pq); new -parentp ← q;
end if

if q = parentp then

send 〈dist, distp〉 to each r ∈ Neighborsp\{parentp};
end if

end while

send 〈dist, distp〉 to parentp;
parentp ← new -parentp; counterp ← 0;

end for

Toueg’s routing algorithm

parentp[q] is the parent of p in the spanning tree rooted at process q, and distp[q]
the distance value of p toward destination q. In roundp, p keeps track of its round
number. The distance values of the pivot in round k are stored in Distancesp[k]. Each
process that sends a request to p for the distance values of the pivot in the current or
a future round k is stored in Forwardp[k]. We assume that p only treats incoming
requests when it is idle, to avoid that a request could be stored in Forwardp[k] after p
forwarded the distance values of the pivot in round k. The pivot in round k is denoted
by pivot(k). We include the optimization that a process, at the reception of distance
values from the pivot, first checks which of its distance values are improved, and
then forwards only those elements of the set that gave rise to an improved distance
value.

nat roundp;
dist distp[r] for all r ∈ Processes;
proc parentp[r] for all r ∈ Processes;
proc-set Forwardp[k] for all k ∈ {0, . . . , N − 1};
proc-dist-set Distancesp[k] for all k ∈ {0, . . . , N − 1};

Initialization of p

distp[p] ← 0; parentp[r] ← r and distp[r] ← weight(pr) for all r ∈ Neighborsp;
perform procedure Requestp;

204 Pseudocode Descriptions

Procedure Requestp

if p = pivot(roundp) then

send 〈dist-set, {(r, distp[r]) | r ∈ Processes and distp[r] < ∞}〉
to each q ∈ Forwardp[roundp];
perform procedure NextRoundp;

else if parentp[pivot(roundp)] �=⊥ then

send 〈request, roundp〉 to parentp[pivot(roundp)];
else

perform procedure NextRoundp;
end if

If p receives 〈request, k〉 from a neighbor q

if k < roundp then

send 〈dist-set,Distancesp[k]〉 to q;
else

Forwardp[k] ← Forwardp[k] ∪ {q};
end if

If p receives 〈dist-set,Distances〉 from parentp[pivot(roundp)]

for each s ∈ Processes do

if there is a pair (s, d) in Distances then

if d+ distp[pivot(roundp)] < distp[s] then

parentp[s] ← parentp[pivot(roundp)];
distp[s] ← d+ distp[pivot(roundp)];

else

remove entry (s, d) from Distances;
end if

end if

end for

send 〈dist-set,Distances〉 to each r ∈ Forwardp[roundp];
Distancesp[roundp] ← Distances;
perform procedure NextRoundp;

Procedure NextRoundp

if roundp < N − 1 then

roundp ← roundp + 1;
perform procedure Requestp;

else

terminate;
end if

Frederickson’s breadth-first search algorithm

parentp is the parent of p in the spanning tree rooted at the initiator, and distp the
distance value of p toward the initiator. In distp[r], p stores the best-known dis-
tance value of neighbor r. After p has sent forward or explore messages, it keeps
track in Ackp of the neighbors that should still send a (positive or negative) reply. In

Frederickson’s breadth-first search algorithm 205

Reportedp, p remembers to which neighbors it should send a forward message in
the next round. The initiator maintains the round number in counter . Each round, �
levels are explored. For uniformity, messages 〈reverse, b〉 are always supplied with
the distance value of the sender.

nat counter only at the initiator;
dist distp, distp[r] for all r ∈ Neighborsp;
proc parentp;
proc-set Ackp, Reportedp;

If p is the initiator

send 〈explore, 1〉 to each r ∈ Neighborsp;
distp ← 0; Ackp ← Neighborsp; counter ← 1;

If p receives 〈explore, k〉 from a neighbor q

distp[q] ← min{distp[q], k − 1};
if k < distp then

parentp ← q; distp ← k; Reportedp ← ∅;
if k mod � �= 0 then

send 〈explore, k + 1〉 to each r ∈ Neighborsp\{q};
Ackp ← {r ∈ Neighborsp | distp[r] > k + 1};
if Ackp = ∅ then

send 〈reverse, k, true〉 to q;
end if

else

send 〈reverse, k, true〉 to q;
end if

else if k mod � �= 0 then

if k ≤ distp + 2 and q ∈ Ackp then

Ackp ← Ackp\{q};
perform procedure ReceivedAckp;

else if k = distp then

Reportedp ← Reportedp\{q};
end if

else

send 〈reverse, k, false〉 to q;
end if

If p receives 〈reverse, k, b〉 from a neighbor q

distp[q] ← min{distp[q], k};
if k = distp + 1 then

if b = true and distp[q] = k then

Reportedp ← Reportedp ∪ {q};
end if

if q ∈ Ackp then

Ackp ← Ackp\{q};
perform procedure ReceivedAckp;

end if

206 Pseudocode Descriptions

end if

Procedure ReceivedAckp

if Ackp = ∅ then

if parentp �=⊥ then

send 〈reverse, distp,Reportedp �= ∅〉 to parentp;
else if Reportedp �= ∅ then

send 〈forward, �·counter〉 to each r ∈ Reportedp;
Ackp ← Reportedp; Reportedp ← ∅; counter ← counter + 1

else

terminate;
end if

end if

If p receives 〈forward, k〉 from a neighbor q

if q = parentp then

if k < depthp then

send 〈forward, k〉 to each r ∈ Reportedp;
Ackp ← Reportedp; Reportedp ← ∅;

else

Ackp ← {r ∈ Neighborsp | distp[r] = ∞};
if Ackp �= ∅ then

send 〈explore, k + 1〉 to each r ∈ Ackp;
else

send 〈reverse, k, false〉 to q;
end if

end if

end if

Dolev-Klawe-Rodeh election algorithm

activep is set when p is an initiator, and reset when p becomes passive. If p terminates
as the leader, it sets leaderp. Since messages of two consecutive rounds can overtake
each other, p keeps track of the parity of its round number in parityp, and attaches
this Boolean value to its message. In election-idp, p stores the ID it assumes for the
current election round. In neighb-idp[0, b] and neighb-idp[1, b], p stores the process
IDs of its two nearest active predecessors in the directed ring, with b the parity of the
corresponding election round. We assume a total order < on process IDs.

bool activep, leaderp, parityp;
proc election-idp, neighb-idp[n, b] for n = 0, 1 and Booleans b;

If p is an initiator

activep ← true; election-idp ← p;
send 〈id, p, 0, b〉;
If p receives 〈id, q, n, b〉

Gallager-Humblet-Spira minimum spanning tree algorithm 207

if activep = true then

if n = 0 then

send 〈id, q, 1, b〉;
end if

neighb-idp[n, b] ← q;
if neighb-idp[n, parityp] �=⊥ for n = 0 and n = 1 then

perform procedure CompareIdsp;
end if

else

send 〈id, q, n, b〉;
end if

Procedure CompareIdsp

if max{election-idp,neighb-idp[1, parityp]} < neighb-idp[0, parityp] then

election-idp ← neighb-idp[0, parityp];
neighb-idp[n, parityp] ←⊥ for n = 0 and n = 1; parityp ← ¬parityp;
send 〈id, election-idp, 0, parityp〉;
if neighb-idp[n, parityp] �=⊥ for n = 0 and n = 1 then

perform procedure CompareIdsp;
end if

else if neighb-idp[0, parityp] < election-idp then

activep ← false;
else

leaderp ← true;
end if

Gallager-Humblet-Spira minimum spanning tree algorithm

parentp is p’s parent toward the core edge of p’s fragment. The name and level of
p’s fragment are stored in namep and levelp. Initially, statep has the value find ;
for simplicity, the state sleep and the corresponding wake-up phase are omitted.
The channel states, statep[q] for each q ∈ Neighborsp, initially are basic. While
looking for a least-weight outgoing edge, p stores the optimal intermediate result in
best-weightp. If the optimal result was reported through the basic or branch edge pq,
then best-edgep has the value q. While p is testing whether basic edge pq is outgoing,
test-edgep has the value q. In counterp, p keeps track of how many branch edges
have reported their minimal value; it starts at 1 to account for the fact that p’s parent
in general does not report a value (except for the core nodes). In parent-reportp,
a core node p can keep the value reported by its parent; if there is no report yet its
value is 0, while the value ∞ means that p’s parent has reported there are no outgoing
edges at its side. In Connectsp and Testsp, p stores incoming connect and test
messages to which a reply is delayed until the level of p’s fragment is high enough.

{find , found} statep;
{basic, branch, rejected} statep[r] for all r ∈ Neighborsp;
real namep;

208 Pseudocode Descriptions

nat levelp, counterp;
dist best-weightp, parent-reportp;
proc parentp, test-edgep, best-edgep;
proc-nat-set Connectsp;
proc-real-nat-set Testsp;

Initialization of p

determine the lowest-weight channel pq;
statep ← found ; statep[q] ← branch; counterp ← 1; parent-reportp ← 0;
send 〈connect, 0〉 to q;

If p receives 〈connect, �〉 from a neighbor q

if � < levelp then

send 〈initiate,namep, levelp, statep〉 to q;
statep[q] ← branch;

else if statep[q] = branch then

send 〈initiate,weight(pq), levelp + 1,find〉 to q;
else

Connectsp = Connectsp ∪ {(q, �)};
end if

If p receives 〈initiate, fn, �, st〉 from a neighbor q

namep ← fn; levelp ← �; statep ← st ; parentp ← q;
best-edgep ←⊥; best-weightp ← ∞; counterp ← 1; parent-reportp ← 0;
for each (q0, �0) ∈ Connectsp do

if �0 < levelp then

statep[q0] ← branch; Connectsp ← Connectsp\{(q0, �0)};
end if

end for

send 〈initiate, fn, �, st〉 to each r ∈ Neighborsp\{q} with statep[r] = branch;
for each (q1, fn1, �1) ∈ Testsp do

if �1 ≤ levelp then

perform procedure ReplyTestp(q1);
Testsp ← Testsp\{(q1, fn1, �1)};

end if

end for

if st = find then

perform procedure FindMinimalOutgoingp;
end if

Procedure FindMinimalOutgoingp

if {pr | r ∈ Neighborsp and statep(pr) = basic} �= ∅ then

send 〈test,namep, levelp〉 into the lowest-weight channel pq in this collection;
test-edgep ← q;

else

test-edgep ←⊥;
end if

If p receives 〈test, fn, �〉 from a neighbor q

Gallager-Humblet-Spira minimum spanning tree algorithm 209

if � ≤ levelp then

perform procedure ReplyTestp(q);
else

Testsp = Testsp ∪ {(q, fn, �)};
end if

Procedure ReplyTestp(q)

if namep �= fn then

send 〈accept〉 to q;
else

statep[pq] ← rejected ;
if test-edgep �= q then

send 〈reject〉 to q;
else

perform procedure FindMinimalOutgoingp;
end if

end if

If p receives 〈reject〉 from a neighbor q

statep[q] ← rejected ;
perform procedure FindMinimalOutgoingp;

If p receives 〈accept〉 from a neighbor q

test-edgep ←⊥;
if weight(pq) < best-weightp then

best-edgep ← q; best-weightp ← weight(pq);
end if

if counterp = |{r ∈ Neighborsp | statep[r] = branch}| then

perform procedure SendReportp
end if

Procedure SendReportp

statep ← found ;
send 〈report, best-weightp〉 to parentp;
if parent-reportp > 0 and best-weightp < parent-reportp then

perform procedure ChangeRootp;
end if

If p receives 〈report, λ〉 from a neighbor q

if q �= parentp then

counterp ← counterp + 1;
if λ < best-weightp then

best-edgep ← q; best-weightp ← λ;
end if

if counterp = |{r ∈ Neighborsp | statep[r] = branch}| and test-edgep =⊥ then

perform procedure SendReportp
end if

else if statep = find then

210 Pseudocode Descriptions

parent-reportp ← λ;
else

if best-weightp < λ then

perform procedure ChangeRootp;
else if λ = ∞ then

terminate;
end if

end if

Procedure ChangeRootp

if statep[best-edgep] = branch then

send 〈changeroot〉 to best-edgep;
else

statep[best-edgep] ← branch;
send 〈connect, levelp〉 to best-edgep;
if (best-edgep, levelp) ∈ Connectsp then

send 〈initiate, best-weightp, levelp + 1,find〉 to best-edgep;
Connectsp ← Connectsp\{(best-edgep, levelp)};

end if

end if

If p receives 〈changeroot〉
perform procedure ChangeRootp;

IEEE 1394 election algorithm

parentp is the parent of p in the spanning tree. receivedp[q] is set when p receives a
parent request from a neighbor q to which p has not sent a parent request. If p gets
into root contention and chooses to start a timer, it sets waitingp. If p terminates as
the leader, it sets leaderp.

bool leaderp, waitingp, receivedp[r] for all r ∈ Neighborsp;
proc parentp;

Initialization of p

perform procedure SendRequestp;

Procedure SendRequestp

if |{r ∈ Neighborsp | receivedp[r] = false}| = 1 then

send 〈parent-req〉 to the only q ∈ Neighborsp with receivedp[q] = false;
parentp ← q;

end if

If p receives 〈parent-req〉 from a neighbor q

if q �= parentp then

receivedp[q] ← true;
send 〈ack〉 to q;

Awerbuch’s synchronizer 211

perform procedure SendRequestp;
else if waitingp = false then

perform procedure RootContentionp;
else

leaderp ← true;
end if

If p receives 〈ack〉 from parentp

terminate;

Procedure RootContentionp

either send 〈parent-req〉 to q and waitingp ← false ,
or start a timer and waitingp ← true;

If a timeout occurs at p

perform procedure RootContentionp;

Awerbuch’s synchronizer

parentp is the parent of p in the spanning tree within its cluster, Childrenp contains
the children of p in this spanning tree, and Designatedp the processes q for which
there is a designated channel pq. Note that these three values are fixed after the
initialization phase. In 1st-counterp and 2nd -counterp, p keeps track of how many
messages still need to be received in the first and second phase of this synchronizer,
respectively.

nat 1st-counterp, 2nd -counterp;
proc parentp;
proc-set Childrenp, Designatedp;

Initialization

The network is divided into clusters, and within each cluster a spanning tree is built. Be-
tween each pair of distinct clusters that are connected by a channel, one of these connecting
channels is labeled as designated. Furthermore, a wake-up phase makes sure that all pro-
cesses start their first pulse, meaning that they perform the procedure NewPulse .

Procedure NewPulsep

send k ≥ 0 basic messages;
1st-counterp ← k + |Childrenp|; 2nd -counterp ← |Childrenp|+ |Designatedp|;
perform procedure FirstReportp;

If p receives a basic message from a neighbor q

send 〈ack〉 to q;

If p receives 〈ack〉 or 〈safe〉
1st-counterp ← 1st-counterp − 1;

212 Pseudocode Descriptions

perform procedure FirstReportp;

Procedure FirstReportp

if 1st-counterp = 0 then

if parentp �=⊥ then

send 〈safe〉 to parentp;
else

perform procedure SendNextp;
end if

end if

Procedure SendNextp

send 〈next〉 to each q ∈ Childrenp;
send 〈cluster-safe〉 to each r ∈ Designatedp;
perform procedure SecondReportp;

If p receives 〈next〉
perform procedure SendNextp;

If p receives 〈cluster-safe〉
2nd -counterp ← 2nd -counterp − 1;
perform procedure SecondReportp;

Procedure SecondReportp

if 2nd -counterp = 0 then

if parentp �=⊥ then

send 〈cluster-safe〉 to parentp;
else

perform procedure SendClusterNextp;
end if

end if

Procedure SendClusterNextp

send 〈cluster-next〉 to each q ∈ Childrenp;
perform procedure NewPulsep;

If p receives 〈cluster-next〉
perform procedure SendClusterNextp;

Ricart-Agrawala mutual exclusion algorithm

We use the lexicographical order on pairs (t, i) with t a time stamp and i a process
index. clock i represents the clock value at pi; it starts at 1. In req-stampi, pi stores
the time stamp of its current request; if there is none, req-stampi = 0. The number
of permissions that pi has received for its current request is maintained in counter i.
In Pending i, pi remembers from which processes it has received a request but to

Raymond’s mutual exclusion algorithm 213

which it has not yet sent permission. The Carvalho-Roucairol optimization is taken
into account. In Requestsi, pi stores to which processes it must send (or has sent) its
next (or current) request.

nat clock i, req-stampi, counter i;
proc-set Pending i, Requestsi;

Initialization of pi

Requestsi ← Neighborsi; clock i ← 1;

If pi wants to enter its critical section

if Requestsi �= ∅ then

send 〈request, clock i, i〉 to each q ∈ Requestsi;
req-stampi ← clock i; counter i ← 0;

else

perform procedure CriticalSectionp;
end if

If pi receives 〈permission〉
counter i ← counter i + 1;
if counter i = |Requestsi| then

perform procedure CriticalSectionp;
end if

Procedure CriticalSectionp

enter critical section;
exit critical section;
send 〈permission〉 to each q ∈ Pending i;
req-stampi ← 0; Requestsi ← Pending i; Pending i ← ∅;

If pi receives 〈request, t, j〉 from a pj

clock i ← max{clock i, t+ 1};
if req-stampi = 0 or (t, j) < (req-stampi, i) then

send 〈permission〉 to pj ;
Requestsi ← Requestsi ∪ {pj};
if req-stampi > 0 then

send 〈request, req-stampi, i〉 to pj ;
end if

else

Pending i ← Pending i ∪ {pj};
end if

Raymond’s mutual exclusion algorithm

parentp is the parent of p in the spanning tree. The queue pendingp contains the
children of p in the tree that have asked for the token, and possibly p itself.

214 Pseudocode Descriptions

proc parentp;
proc-queue pendingp;

If p is the initiator

Initiate a wave that determines a spanning tree of the network, captured by values of
parentr for all r ∈ Processes , with p as root;

If p wants to enter its critical section

if parentp �=⊥ then

pendingp ← append(pendingp, p);
if head(pendingp) = p then

send 〈request〉 to parentp;
end if

else

perform procedure CriticalSectionp;
end if

If p receives 〈request〉 from a neighbor q

pendingp ← append(pendingp, q);
if head(pendingp) = q then

if parentp �=⊥ then

send 〈request〉 to parentp;
else if p is not in its critical section then

perform procedure SendTokenp;
end if

end if

If p receives 〈token〉
if head(pendingp) �= p then

perform procedure SendTokenp;
else

parentp ←⊥; pendingp ← tail(pendingp);
perform procedure CriticalSectionp;

end if

Procedure SendTokenp

parentp ← head(pendingp); pendingp ← tail(pendingp);
send 〈token〉 to parentp;
if pendingp �= ∅ then

send 〈request〉 to parentp;
end if

Procedure CriticalSectionp

enter critical section;
exit critical section;
if pendingp �= ∅ then

perform procedure SendTokenp;
end if

Agrawal-El Abbadi mutual exclusion algorithm 215

Agrawal-El Abbadi mutual exclusion algorithm

requestsp is a queue of processes from which p must still obtain permission to en-
ter its critical section. The set Permissionsp contains the processes from which p
has received permission during its current attempt to become privileged. The queue
pendingp contains the processes from which p has received a request; it has only sent
permission to the head of this queue. (We recall that p may have to ask permission
from itself.) We assume that N = 2k − 1 for some k > 1, so that the binary tree
has depth k − 1. root denotes the root node of the binary tree, and for any nonleaf
q in the tree, left-child(q) and right-child(q) denote its child at the left and right,
respectively. Processes may crash, and are provided with a complete and strongly
accurate failure detector. When p detects that another process has crashed, it puts the
corresponding process ID in the set Crashedp.

proc-queue requestsp, pendingp;
proc-set Permissionsp, Crashedp;

If p wants to enter its critical section

requestsp ← append(∅, root);
perform procedure SendRequestp;

Procedure SendRequestp

if head(requestsp) /∈ Crashedp then

send 〈request〉 to head(requestsp);
else

perform procedure HeadRequestsCrashedp;
end if

Procedure HeadRequestsCrashedp

if head(requestsp) is not a leaf of the binary tree then

requestsp ← append(append(tail(requestsp), left-child(head(requestsp))),
right-child(head(requestsp)));

perform procedure SendRequestp;
else

Permissionsp ← ∅;
start a new attempt to enter the critical section;

end if

If p receives 〈request〉 from a process q

pendingp ← append(pendingp, q);
if head(pendingp) = q then

perform procedure SendPermissionp;
end if

Procedure SendPermissionp

if pendingp �= ∅ then

if head(pendingp) /∈ Crashedp then

216 Pseudocode Descriptions

send 〈permission〉 to head(pendingp);
else

pendingp ← tail(pendingp);
perform procedure SendPermissionp;

end if

end if

If p receives 〈permission〉 from process q

Permissionsp ← Permissionsp ∪ {q}; requestsp ← tail(requestsp);
if q is not a leaf of the binary tree then

either requestsp ← append(requestsp, left-child(q))
or requestsp ← append(requestsp, right-child(q));

end if

if requestsp �= ∅ then

perform procedure SendRequestp;
else

enter critical section;
exit critical section;
send 〈released〉 to each r ∈ Permissionsp;
Permissionsp ← ∅;

end if

If p receives 〈released〉
pendingp ← tail(pendingp);
perform procedure SendPermissionp;

If p detects that a process q has crashed

Crashedp ← Crashedp ∪ {q};
if head(requestsp) = q then

perform procedure HeadRequestsCrashedp;
end if

if head(pendingp) = q then

pendingp ← tail(pendingp);
perform procedure SendPermissionp;

end if

MCS queue lock

Since processes can use the same node for each lock access, we take the liberty
to represent the queue of waiting processes using process IDs instead of nodes.
The multi-writer register waitp is true as long as p must wait to get the lock. The
multi-writer register succp points to the successor of p in the queue of waiting pro-
cesses. The single-writer register predp points to the predecessor of p in the queue
of waiting processes. When a process arrives at this queue, it assigns its process
ID to the multi-writer register last . The operation last .get-and -set(p) assigns the
value p to last , and returns the previous value of last , all in one atomic step. And
last .compare-and -set(p,⊥) in one atomic operation reads the value of last , and

CLH queue lock with timeouts 217

either assigns the value ⊥ to last , if its current value is p, or leaves the value of last
unchanged otherwise. In the first case this operation returns true, while in the second
case it returns false.

bool waitp;
proc last , succp, predp;

If p wants to enter its critical section

predp ← last .get-and -set(p);
if predp �=⊥ then

waitp ← true; succpredp
← p;

while waitp = true do

{};
end while

end if

enter critical section;
exit critical section;
if succp �=⊥ then

waitsuccp ← false;
else if last .compare-and -set(p,⊥) returns false then

while succp =⊥ do

{};
end while

waitsuccp ← false;
end if

CLH queue lock with timeouts

The data type pointer consists of pointers to a node, with as default initial value
null. If p want to enter its critical section, it creates a node ν containing a pointer
predν . Let node ν′ denote the nearest nonabandoned predecessor of ν in the queue.
predp points to ν′. In pred -predp, p repeatedly stores the value of predν′ . If p decides
to abandon its attempt to get the lock, and it has a successor in the queue, then it lets
predν point to ν′. The multi-writer register last points to the last node in the queue.

pointer last , predp, pred -predp, predν for all nodes ν;

If p wants to enter its critical section

create a node ν;
predp ← last .get-and -set(ν);
if predp = null then

perform procedure CriticalSectionp(ν);
else

while no timeout occurs do

pred -predp ← predpredp
;

if pred -predp = released then

218 Pseudocode Descriptions

perform procedure CriticalSectionp(ν);
else if pred -predp �= null then

predp ← pred -predp;
end if

end while

if last .compare-and -set(ν, predp) returns false then

predν ← predp;
end if

abandon the attempt to take the lock;
end if

Procedure CriticalSectionp(ν)

enter critical section;
exit critical section;
if last .compare-and -set(ν, null) returns false then

predν ← released;
end if

terminate;

Afek-Kutten-Yung spanning tree algorithm

Self-stabilizing algorithms are always defined in a shared-memory framework. There-
fore, the message-passing description of the Afek-Kutten-Yung spanning tree algo-
rithm in section 18.3 is here cast in shared variables. We recall that variables can be
initialized with any value in their domain.

rootp is the root of the spanning tree according to p, parentp represents the
parent of p in the spanning tree, and distp is the distance value of p toward the
root. The variables reqp, fromp, top, and directionp deal with join requests and
corresponding grant messages. In reqp the process ID of the process that originally
issued the request is stored, in fromp the neighbor from which p received the request,
in top the neighbor to which p forwarded the request, and in directionp whether a
request is being forwarded to the root of the fragment, or a grant message is being
forwarded to the process that originally issued the request. togglep makes sure that p
performs an event only when all its neighbors have copied the current values of p’s
local variables; toggleq(p) represents the copy at neighbor q of the value of togglep .
It is assumed that a process copies the values of all local variables of a neighbor in
one atomic step.

We use the following abbreviations. AmRootp states that p considers itself root:

parentp =⊥ ∧ rootp = p ∧ distp = 0.

NotRootp states that p does not consider itself root, and that the values of p’s local
variables are in line with those of its parent:

parentp ∈ Neighborsp ∧ rootp > p

∧ rootp = rootparentp ∧ distp = distparentp + 1.

Afek-Kutten-Yung spanning tree algorithm 219

MaxRootp states that no neighbor of p has a root value greater than rootp:

rootp ≥ rootr for all r ∈ Neighborsp.

The network is stable, with the process with the largest ID as root, if at each process
p either AmRootp or NotRootp holds, as well as MaxRootp.

In the following pseudocode, p repeatedly copies the values of the local variables
of its neighbors, checks whether all its neighbors have copied the current values of
p’s local variables, and if so, tries to perform one of several possible events. First
of all, if NotRootp ∧ MaxRootp does not hold and p does not yet consider itself
root, then p makes itself root. The second kind of events arises if MaxRootp does
not hold (and so, since p skipped the first case, AmRootp does hold). Then either p
asks a neighbor with a maximal root value to become its parent, if p is not already
making such a request to a neighbor q, expressed by (the negation of) the predicate
Askingp(q):

rootq ≥ rootr for all r ∈ Neighborsp
∧ reqp = fromp = p ∧ top = q ∧ directionp = ask.

Or such a request by p may be granted by a neighbor q, expressed by the predicate
Grantedp(q):

reqq = reqp ∧ fromq = fromp ∧ directionq = grant ∧ directionp = ask,

where we take q to be top. It is moreover required that p issued a request to top,
expressed by the predicate Requestorp:

top ∈ Neighborsp ∧ root top
> p ∧ reqp = fromp = p.

In this case top becomes p’s parent. The third kind of events arises when p is not yet
handling a request from a neighbor q, expressed by (the negation of) the predicate
Handlingp(q):

reqq = reqp ∧ fromp = q ∧ toq = p ∧ top = parentp ∧ directionq = ask.

Here q should be either a root that issued a join request, or a child of p in the spanning
tree, expressed by the predicate Requestp(q):

(AmRootq ∧ reqq = fromq = q) ∨ (parentq = p ∧ reqq /∈ {q,⊥}).
If the four variables that capture requests are not all undefined, expressed by (the
negation of) the predicate NotHandlingp,

reqp =⊥ ∧ fromp =⊥ ∧ top =⊥ ∧ directionp =⊥,

then p sets the values of these four variables to ⊥. Otherwise, p forwards a request,
but only if fromparentp

�= p (allowing parentp to first reset its join request variables).
The fourth kind of event is that a root p that is handling a request of a neighbor sets

220 Pseudocode Descriptions

directionp to grant. Finally, the fifth kind of event is that a nonroot p that finds that
its request has been granted by its parent sets directionp to grant. Note that for the
third, fourth, and fifth kinds of events, AmRootp∨NotRootp (because p skipped the
first case) and MaxRootp (because p skipped the second case). And for the fourth
and fifth kinds of events, Requestp(q) ∧ Handlingp(q) for some q ∈ Neighborsp
(because p skipped the third case).

bool togglep , togglep(r) for all r ∈ Neighborsp;
dist distp;
proc parentp, rootp, reqp, fromp, top;
{ask, grant,⊥} directionp;

while true do

copy the values of variables of all neighbors into a local copy;
if toggler(p) = togglep for all r ∈ Neighborsp then

if ¬(NotRootp ∧MaxRootp) ∧ ¬AmRootp then

parentp ←⊥; rootp ← p; distp ← 0;
else if ¬MaxRootp then

if ¬Askingp(r) for all r ∈ Neighborsp then

reqp ← p; fromp ← p; directionp ← ask;
top ← q for a q ∈ Neighborsp with rootq as large as possible;

else if Requestorp ∧Grantedp(top) then

parentp ← top; rootp ← root top distp ← dist top + 1;
reqp ←⊥; fromp ←⊥; top ←⊥; directionp ←⊥;

end if

else if ¬(Requestp(r) ∧ Handlingp(r)) for all r ∈ Neighborsp then

if ¬NotHandlingp then

reqp ←⊥; fromp ←⊥; top ←⊥; directionp ←⊥;
else if fromparentp

�= p ∧ Requestp(q) for some q ∈ Neighborsp then

reqp ← reqq; fromp ← q; top ← parentp; directionp ← ask;
end if

else if AmRootp ∧ directionp = ask then

directionp ← grant;
else if Grantedp(parentp) then

directionp ← grant;
end if

togglep ← ¬togglep ;
end if

end while

References

1. Y. AFEK, S. KUTTEN, AND M. YUNG (1997), The local detection paradigm and its
applications to self-stabilization, Theoretical Computer Science, 186, pp. 199–229.

2. D. AGRAWAL AND A. EL ABBADI (1991), An efficient and fault-tolerant solution for
distributed mutual exclusion, ACM Transactions on Computer Systems, 9, pp. 1–20.

3. T.E. ANDERSON (1990), The performance of spin lock alternatives for shared-memory
multiprocessors, IEEE Transactions on Parallel and Distributed Systems, 1, pp. 6–16.

4. D. ANGLUIN (1980), Local and global properties in networks of processors, in Proc. 12th
Symposium on Theory of Computing, pp. 82–93, ACM.

5. A. ARORA AND M.G. GOUDA (1994), Distributed reset, IEEE Transactions on Comput-
ers, 43, pp. 1026–1038.

6. B. AWERBUCH (1985), Complexity of network synchronization, Journal of the ACM, 32,
pp. 804–823.

7. B. AWERBUCH (1985), A new distributed depth-first-search algorithm, Information Pro-
cessing Letters, 20, pp. 147–150.

8. R. BAKHSHI, J. ENDRULLIS, W. FOKKINK, AND J. PANG (2011) Fast leader election
in anonymous rings with bounded expected delay, Information Processing Letters, 111,
pp. 864–870.

9. R. BAKHSHI, W. FOKKINK, J. PANG, AND J. VAN DE POL (2008), Leader election in
anonymous rings: Franklin goes probabilistic, in Proc. 5th IFIP Conference on Theoreti-
cal Computer Science, pp. 57–72, Springer.

10. D.I. BEVAN (1987), Distributed garbage collection using reference counting, in Proc. 1st
Conference on Parallel Architectures and Languages Europe, vol. 259 of Lecture Notes
in Computer Science, pp. 176–187, Springer.

11. G. BRACHA AND S. TOUEG (1985), Asynchronous consensus and broadcast protocols,
Journal of the ACM, 32, pp. 824–840.

12. G. BRACHA AND S. TOUEG (1987), Distributed deadlock detection, Distributed Com-
puting, 2, pp. 127–138.

13. J.E. BURNS AND N.A. LYNCH (1993), Bounds on shared memory for mutual exclusion,
Information and Computation, 107, pp. 171–184.

14. O.S.F. CARVALHO AND G. ROUCAIROL (1983), On mutual exclusion in computer net-
works, Communications of the ACM, 26, pp. 146–147.

15. T.D. CHANDRA AND S. TOUEG (1996), Unreliable failure detectors for reliable dis-
tributed systems, Journal of the ACM, 43, pp. 225–267.

222 References

16. K.M. CHANDY AND L. LAMPORT (1985), Distributed snapshots: Determining global
states of distributed systems, ACM Transactions on Computer Systems, 3, pp. 63–75.

17. K.M. CHANDY AND J. MISRA (1982), Distributed computation on graphs: Shortest path
algorithms, Communications of the ACM, 25, pp. 833–837.

18. E.J.H. CHANG (1982), Echo algorithms: Depth parallel operations on general graphs,
IEEE Transactions on Software Engineering, 8, pp. 391–401.

19. E.J.H. CHANG AND R. ROBERTS (1979), An improved algorithm for decentralized
extrema-finding in circular configurations of processes, Communications of the ACM,
22, pp. 281–283.

20. T.-Y. CHEUNG (1983), Graph traversal techniques and the maximum flow problem in
distributed computation, IEEE Transactions on Software Engineering, 9, pp. 504–512.

21. C.-T. CHOU, I. CIDON, I.S. GOPAL, AND S. ZAKS (1990), Synchronizing asynchronous
bounded delay networks, IEEE Transactions on Communications, 38, pp. 144–147.

22. I. CIDON (1988), Yet another distributed depth-first-search algorithm, Information Pro-
cessing Letters, 26, pp. 301–305.

23. T.S. CRAIG (1993), Building FIFO and priority-queueing spin locks from atomic swap,
Tech. Rep. TR 93-02-02, University of Washington.

24. E.W. DIJKSTRA (1974), Self-stabilizing systems in spite of distributed control, Commu-
nications of the ACM, 17, pp. 643–644.

25. E.W. DIJKSTRA (1987), Shmuel Safra’s version of termination detection, vol. 998 of
EWD manuscripts, The University of Texas at Austin.

26. E.W. DIJKSTRA AND C.S. SCHOLTEN (1980), Termination detection for diffusing com-
putations, Information Processing Letters, 11, pp. 1–4.

27. D. DOLEV, M.M. KLAWE, AND M. RODEH (1982), An O(n log n) unidirectional dis-
tributed algorithm for extrema finding in a circle, Journal of Algorithms, 3, pp. 245–260.

28. D. DOLEV AND H.R. STRONG (1983), Authenticated algorithms for Byzantine agree-
ment, SIAM Journal on Computing, 12, pp. 656–666.

29. C.J. FIDGE (1988), Timestamps in message-passing systems that preserve the partial
ordering, in Proc. 11th Australian Computer Science Conference, pp. 56–66.

30. M.J. FISCHER, N.A. LYNCH, AND M. PATERSON (1985), Impossibility of distributed
consensus with one faulty process, Journal of the ACM, 32, pp. 374–382.

31. W. FOKKINK, J.-H. HOEPMAN, AND J. PANG (2005), A note on K-state self-
stabilization in a ring with K = N , Nordic Journal of Computing, 12, pp. 18–26.

32. W. FOKKINK AND J. PANG (2006), Variations on Itai-Rodeh leader election for anony-
mous rings and their analysis in PRISM, Journal of Universal Computer Science, 12,
pp. 981–1006.

33. W.R. FRANKLIN (1982), On an improved algorithm for decentralized extrema-finding in
circular configurations of processes, Communications of the ACM, 25, pp. 336–337.

34. G.N. FREDERICKSON (1985), A single source shortest path algorithm for a planar dis-
tributed network, in Proc. 2nd Symposium of Theoretical Aspects of Computer Science,
vol. 182 of Lecture Notes in Computer Science, pp. 143–150, Springer.

35. R.G. GALLAGER, P.A. HUMBLET, AND P.M. SPIRA (1983), A distributed algorithm
for minimum-weight spanning trees, ACM Transactions on Programming Languages and
Systems, 5, pp. 66–77.

36. D. HENSGEN, R.A. FINKEL, AND U. MANBER (1988), Two algorithms for barrier syn-
chronization, International Journal of Parallel Programming, 17, pp. 1–17.

37. M. HERLIHY AND N. SHAVIT (2008), The Art of Multiprocessor Programming, Morgan
Kaufmann.

38. IEEE COMPUTER SOCIETY (1996), IEEE standard for a high performance serial bus,
Tech. Rep. Std. 1394-1995, IEEE.

References 223

39. A. ITAI AND M. RODEH (1990), Symmetry breaking in distributed networks, Information
and Computation, 88, pp. 60–87.

40. V. JACOBSON (1988), Congestion avoidance and control, in Proc. 3rd Symposium on
Communications Architectures and Protocols, pp. 314–329, ACM.

41. E. KREPSKA, T. KIELMANN, W. FOKKINK, AND H. BAL (2011), HipG: Parallel pro-
cessing of large-scale graphs, ACM SIGOPS Operating Systems Review, 45, pp. 3–13.

42. C.P. KRUSKAL, L. RUDOLPH, AND M. SNIR (1988), Efficient synchronization on mul-
tiprocessors with shared memory, ACM Transactions on Programming Languages and
Systems, 10, pp. 579–601.

43. T.H. LAI AND T.H. YANG (1987), On distributed snapshots, Information Processing
Letters, 25, pp. 153–158.

44. L. LAMPORT (1974), A new solution of Dijkstra’s concurrent programming problem,
Communications of the ACM, 17, pp. 453–455.

45. L. LAMPORT (1978), Time, clocks, and the ordering of events in a distributed system,
Communications of the ACM, 21, pp. 558–565.

46. L. LAMPORT (1987), A fast mutual exclusion algorithm, ACM Transactions on Computer
Systems, 5, pp. 1–11.

47. L. LAMPORT, R.E. SHOSTAK, AND M.C. PEASE (1982), The Byzantine generals prob-
lem, ACM Transactions on Programming Languages and Systems, 4, pp. 382–401.

48. J.P. LEHOCZKY AND S. RAMOS-THUEL (1992), An optimal algorithm for scheduling
soft-aperiodic tasks in fixed-priority preemptive systems, in Proc. 13th Real-Time Systems
Symposium, pp. 110–123, IEEE.

49. H. LIEBERMAN AND C. HEWITT (1983), A real-time garbage collector based on the
lifetimes of objects, Communications of the ACM, 26, pp. 419–429.

50. J.W. LIU (2000), Real-Time Systems, Prentice-Hall.
51. P.S. MAGNUSSON, A. LANDIN, AND E. HAGERSTEN (1994), Queue locks on cache

coherent multiprocessors, in Proc. 8th Symposium on Parallel Processing, pp. 165–171,
IEEE.

52. S.R. MAHANEY AND F.B. SCHNEIDER (1985), Inexact agreement: Accuracy, precision,
and graceful degradation, in Proc. 4th Symposium on Principles of Distributed Comput-
ing, pp. 237–249, ACM.

53. G. MALEWICZ, M.H. AUSTERN, A.J.C. BIK, J.C. DEHNERT, I. HORN, N. LEISER,
AND G. CZAJKOWSKI (2010), Pregel: A system for large-scale graph processing, in Proc.
10th Conference on Management of Data, pp. 135–146, ACM.

54. F. MATTERN (1989), Global quiescence detection based on credit distribution and recov-
ery, Information Processing Letters, 30, pp. 195–200.

55. F. MATTERN (1989), Virtual time and global states of distributed systems, in Proc. Work-
shop on Parallel and Distributed Algorithms, pp. 215–226, North-Holland/Elsevier.

56. J.M. MCQUILLAN (1974), Adaptive Routing for Distributed Computer Networks, PhD
thesis, Harvard University.

57. J.M. MCQUILLAN, I. RICHER, AND E.C. ROSEN (1980), The new routing algorithm
for ARPANET, IEEE Transactions on Communications, 28, pp. 711–719.

58. J.M. MELLOR-CRUMMEY AND M.L. SCOTT (1991), Algorithms for scalable synchro-
nization on shared-memory multiprocessors, ACM Transactions on Computer Systems,
9, pp. 21–65.

59. P.M. MERLIN AND P.J. SCHWEITZER (1980), Deadlock avoidance in store-and-forward
networks I: Store-and-forward deadlock, IEEE Transactions on Communications, 28,
pp. 345–354.

60. P.M. MERLIN AND A. SEGALL (1979), A failsafe distributed routing protocol, IEEE
Transactions on Communications, 27, pp. 1280–1287.

224 References

61. J.K. PACHL, E. KORACH, AND D. ROTEM (1984), Lower bounds for distributed
maximum-finding algorithms, Journal of the ACM, 31, pp. 905–918.

62. G.L. PETERSON (1981), Myths about the mutual exclusion problem, Information Pro-
cessing Letters, 12, pp. 115–116.

63. G.L. PETERSON (1982), An O(n log n) unidirectional algorithm for the circular extrema
problem, ACM Transactions on Programming Languages and Systems, 4, pp. 758–762.

64. J.M. PIQUER (1991), Indirect reference counting: A distributed garbage collection algo-
rithm, in Proc. 3rd Conference on Parallel Architectures and Languages Europe, vol. 505
of Lecture Notes in Computer Science, pp. 150–165, Springer.

65. R. RAJKUMAR, L. SHA, AND J.P. LEHOCZKY (1988), Real-time synchronization pro-
tocols for multiprocessors, in Proc. 9th Real-Time Systems Symposium, pp. 259–269,
IEEE.

66. S.P. RANA (1983), A distributed solution of the distributed termination problem, Infor-
mation Processing Letters, 17, pp. 43–46.

67. K. RAYMOND (1989), A tree-based algorithm for distributed mutual exclusion, ACM
Transactions on Computer Systems, 7, pp. 61–77.

68. G. RICART AND A.K. AGRAWALA (1981), An optimal algorithm for mutual exclusion
in computer networks, Communications of the ACM, 24, pp. 9–17.

69. M.L. SCOTT AND W.N. SCHERER III (2001), Scalable queue-based spin locks with
timeout, in Proc. 8th Symposium on Principles and Practice of Parallel Programming,
pp. 44–52, ACM.

70. A. SEGALL (1983), Distributed network protocols, IEEE Transactions on Information
Theory, 29, pp. 23–34.

71. L. SHA, R. RAJKUMAR, AND J.P. LEHOCZKY (1990), Priority inheritance protocols: An
approach to real-time synchronization, IEEE Transactions on Computers, 39, pp. 1175–
1185.

72. N. SHAVIT AND N. FRANCEZ (1986), A new approach to detection of locally indicative
stability, in Proc. 13th Colloquium on Automata, Languages and Programming, vol. 226
of Lecture Notes in Computer Science, pp. 344–358, Springer.

73. M. SPURI AND G.C. BUTTAZZO (1996), Scheduling aperiodic tasks in dynamic priority
systems, Real-Time Systems, 10, pp. 179–210.

74. J.K. STROSNIDER, J.P. LEHOCZKY, AND L. SHA (1995), The deferrable server algo-
rithm for enhanced aperiodic responsiveness in hard real-time environments, IEEE Trans-
actions on Computers, 44, pp. 73–91.

75. G. TARRY (1895), Le problème des labyrinthes, Nouvelles Annales de Mathématiques,
14, pp. 187–190.

76. G. TEL (2000), Introduction to Distributed Algorithms, Cambridge University Press, 2nd
edition.

77. G. TEL AND F. MATTERN (1993), The derivation of distributed termination detection
algorithms from garbage collection schemes, ACM Transactions on Programming Lan-
guages and Systems, 15, pp. 1–35.

78. S. TOUEG (1980), An all-pairs shortest-path distributed algorithm, Tech. Rep. RC-8397,
IBM Thomas J. Watson Research Center.

79. S.C. VESTAL (1987), Garbage Collection: An Exercise in Distributed, Fault-Tolerant
Programming, PhD thesis, University of Washington.

80. P. WATSON AND I. WATSON (1987), An efficient garbage collection scheme for parallel
computer architectures, in Proc. 1st Conference on Parallel Architectures and Languages
Europe, vol. 259 of Lecture Notes in Computer Science, pp. 432–443, Springer.

81. P.-C. YEW, N.-F. TZENG, AND D.H. LAWRIE (1987), Distributing hot-spot addressing
in large-scale multiprocessors, IEEE Transactions on Computers, 36, pp. 388–395.

Index

0-potent, 112
1-potent, 112
N -out-of-M request, 27
α synchronizer, 102
β synchronizer, 102
γ synchronizer, 103
ρ-bounded drift, 105
k-Byzantine broadcast, 128
k-Byzantine clock synchronization, 126
k-Byzantine consensus, 121
k-crash consensus, 112

absolute deadline, 181
active process, 73
acyclic orientation, 66
acyclic orientation cover, 66
acyclic orientation cover controller, 66
Afek-Kutten-Yung spanning tree algorithm,

177, 218
Agrawal-El Abbadi mutual exclusion

algorithm, 140, 215
agreement, 111
algorithm, 1

basic, 11
centralized, 8
control, 11
decentralized, 8
distributed, 8
Las Vegas, 88
Monte Carlo, 88
probabilistic, 88
self-stabilizing, 171

Anderson’s lock, 155

anonymous network, 87
echo algorithm with extinction, 91
Itai-Rodeh election algorithm, 89
Itai-Rodeh ring size algorithm, 94
resuscitation election algorithm, 107

aperiodic job, 182
aperiodic task, 182
Arora-Gouda spanning tree algorithm, 175
arrival time, 181
assertion, 9
asynchronous communication, 7
Awerbuch’s depth-first search algorithm, 22
Awerbuch’s synchronizer, 102, 211

background server, 185
bakery mutual exclusion algorithm, 150
barrier, 161

combining tree, 162
dissemination, 168
sense-reversing, 161
tournament, 165

basic algorithm, 11
basic message, 13
bivalent configuration, 111
blocked node, 27
Boolean, 2
bounded delay network, 105
bounded expected delay network, 106
Bracha-Toueg Byzantine consensus

algorithm, 122
Bracha-Toueg crash consensus algorithm,

113
Bracha-Toueg deadlock detection algorithm,

30

226 Index

breadth-first search, 55
Frederickson’s algorithm, 62, 204

breadth-first search tree, 55
bus, 145
busy-waiting, 147
Byzantine broadcast, 127

Lamport-Shostak-Pease algorithm, 128
Lamport-Shostak-Pease authentication

algorithm, 131
Dolev-Strong optimization, 132

Byzantine clock synchronization
Lamport-Melliar-Smith synchronizer, 133
Mahaney-Schneider synchronizer, 126

Byzantine consensus, 121
Bracha-Toueg algorithm, 122

Byzantine failure, 121

cache, 146
cache line, 156
Carvalho-Roucairol optimization, 136
causal order, 9
centralized algorithm, 8
Chandra-Toueg crash consensus algorithm,

117
Chandy-Lamport snapshot algorithm, 14,

194
Chandy-Misra routing algorithm, 53, 202
Chang-Roberts election algorithm, 73
channel, 7

directed, 7
FIFO, 7
undirected, 7

channel state, 13
child node, 7
Cidon’s depth-first search algorithm, 22, 196
CLH lock, 156
CLH lock with timeouts, 158, 217
clock, 7, 105

local, 105
logical, 10

combining tree barrier, 162
communication, 7

asynchronous, 7
synchronous, 8

communication deadlock, 27
compare-and -set , 145
complete failure detector, 115
complete network, 7
computation, 10

concurrent event, 10
configuration, 8

bivalent, 111
initial, 8
reachable, 8
symmetric, 87
terminal, 8

congestion window, 68
consensus, 111

k-Byzantine, 121
k-crash, 112
Byzantine, 121
crash, 111

consistent snapshot, 13
control algorithm, 11
control message, 13
controller, 65

acyclic orientation cover, 66
destination, 65
hops-so-far, 66

core edge, 81
core node, 81
correct process, 111, 121
crash consensus, 111

Bracha-Toueg algorithm, 113
Chandra-Toueg algorithm, 117
rotating coordinator algorithm, 116

crash failure, 111
crashed process, 111
critical section, 135
cyclic garbage, 47

deadline, 181
absolute, 181
hard, 181
relative, 181

deadlock, 27
communication, 27
resource, 27
store-and-forward, 65

deadlock detection
Bracha-Toueg algorithm, 30

decentralized algorithm, 8
decide event, 19
deferrable server, 186
dependence, 128
depth-first search, 21

Awerbuch’s algorithm, 22
Cidon’s algorithm, 22, 196

Index 227

depth-first search tree, 21
destination controller, 65
Dijkstra’s token ring, 171
Dijkstra-Scholten termination detection

algorithm, 38
directed channel, 7
directed network, 7
dissemination barrier, 168
distributed algorithm, 8
Dolev-Klawe-Rodeh election algorithm, 75,

206
Dolev-Strong optimization, 132

earliest deadline first scheduler, 184
echo algorithm, 24, 197
echo algorithm with extinction, 79, 91
edge, 7

core, 81
frond, 7
outgoing, 80
tree, 7

election, 73
Chang-Roberts algorithm, 73
Dolev-Klawe-Rodeh algorithm, 75, 206
echo algorithm with extinction, 79, 91
Franklin’s algorithm, 74
IEEE 1394 election algorithm, 96, 210
Itai-Rodeh algorithm, 89
resuscitation algorithm, 107
tree algorithm, 77

event, 8
concurrent, 10
decide, 19
postsnapshot, 13
presnapshot, 13
receive, 8
send, 8

eventually strongly accurate failure detector,
116

eventually weakly accurate failure detector,
117

execution, 8
fair, 9

execution time, 181
exponential back-off, 154

failure
Byzantine, 121
crash, 111

failure detector, 115
complete, 115
eventually strongly accurate, 116
eventually weakly accurate, 117
strongly accurate, 115
weakly accurate, 116

failure detector history, 115
failure pattern, 115
fair execution, 9
fair message scheduling, 115
false root, 175
field, 145
FIFO channel, 7
FIFO queue, 137, 193
first-come, first-served, 150
Fischer’s mutual exclusion algorithm, 152
fragment, 80
Franklin’s election algorithm, 74
Frederickson’s breadth-first search

algorithm, 62, 204
frond edge, 7

Gallager-Humblet-Spira minimum spanning
tree algorithm, 80, 207

garbage, 47
cyclic, 47

garbage collection, 47
generational, 51
mark-compact, 51
mark-copy, 51
mark-scan, 51
reference counting, 47

indirect, 48
weighted, 49

tracing, 51
general, 127
generational garbage collection, 51
get-and -increment , 145
get-and -set , 145
graph, 7

wait-for, 27

hard deadline, 181
hops-so-far controller, 66

ID, 7
IEEE 1394 election algorithm, 96, 210
indirect reference counting, 48
initial configuration, 8

228 Index

initiator, 8
invariant, 9
Itai-Rodeh election algorithm, 89
Itai-Rodeh ring size algorithm, 94

jitter, 183
job, 181

aperiodic, 182
periodic, 182
preemptive, 183
sporadic, 182

Lai-Yang snapshot algorithm, 15, 194
Lamport’s logical clock, 10
Lamport-Melliar-Smith Byzantine clock

synchronization algorithm, 133
Lamport-Shostak-Pease authentication

algorithm, 131
Dolev-Strong optimization, 132

Lamport-Shostak-Pease broadcast algorithm,
128

Las Vegas algorithm, 88
least slack-time first scheduler, 184
lexicographical order, 3
lieutenant, 127
link-state packet, 67
link-state routing algorithm, 67
livelock-freeness, 146
liveness property, 9
local clock, 105
local snapshot, 13
lock, 146

queue, 155
test-and-set, 153
test-and-test-and-set, 154

lockstep, 101
logical clock, 10

Lamport’s, 10
vector, 10

Mahaney-Schneider Byzantine clock
synchronization algorithm, 126

main memory, 145
mark-compact garbage collection, 51
mark-copy garbage collection, 51
mark-scan garbage collection, 51
MCS lock, 157, 216
Merlin-Segall routing algorithm, 55, 202
message, 7

basic, 13
control, 13
valid, 131

message passing, 7
minimum spanning tree, 80

Gallager-Humblet-Spira algorithm, 80,
207

minimum-hop path, 55
modulo arithmetic, 4
Monte Carlo algorithm, 88
multi-reader register, 145
multi-writer register, 145
multiset, 128
mutual exclusion, 135

Agrawal-El Abbadi algorithm, 140, 215
bakery algorithm, 150
Dijkstra’s token ring, 171
Fischer’s algorithm, 152
Peterson’s algorithm, 147
Raymond’s algorithm, 137, 213
Ricart-Agrawala algorithm, 135, 212

Carvalho-Roucairol optimization, 136
test-and-set lock, 153
test-and-test-and-set lock, 154

network, 7
anonymous, 87
bounded delay, 105
bounded expected delay, 106
complete, 7
directed, 7
undirected, 7

node, 7, 156
blocked, 27
child, 7
core, 81
parent, 7

null, 157, 217
NUMA architecture, 158

object, 47
root, 47

object owner, 47
offline scheduler, 182
online scheduler, 183
order, 3

lexicographical, 3
partial, 3
total, 3

Index 229

outgoing edge, 80

padding, 156
parent node, 7
partial order, 3
passive process, 73
path, 7

minimum-hop, 55
period, 182
periodic job, 182
periodic task, 182
Peterson’s mutual exclusion algorithm, 147
pivot, 59
pointer, 47, 156
null, 157

polling server, 186
postsnapshot event, 13
precision, 105
preemptive job, 183
presnapshot event, 13
priority ceiling, 189
priority inheritance, 189
privileged process, 135
probabilistic algorithm, 88
process, 7

active, 73
correct, 111, 121
crashed, 111
passive, 73
privileged, 135
safe, 102

process ID, 7
processor, 145
progress property, 146
property

liveness, 9
progress, 146
safety, 9

pseudocode, 193
public-key cryptographic system, 130
pulse, 101

queue, 137, 193
queue lock, 155

Anderson’s lock, 155
CLH lock, 156
CLH lock with timeouts, 158, 217
MCS lock, 157, 216

quorum, 140

Rana’s termination detection algorithm, 40,
200

rate-monotonic scheduler, 183
Raymond’s mutual exclusion algorithm, 137,

213
reachable configuration, 8
read-modify-write operation, 145

compare-and -set , 145
get-and -increment , 145
get-and -set , 145
test-and -set , 145

real-time computing, 181
receive event, 8
reference, 47
reference counting, 47

indirect, 48
weighted, 49

register, 145
multi-reader, 145
multi-writer, 145
single-reader, 145
single-writer, 145

relative deadline, 181
release time, 181
resource access control, 188

priority ceiling, 189
priority inheritance, 189

resource deadlock, 27
resuscitation election algorithm, 107
Ricart-Agrawala mutual exclusion

algorithm, 135, 212
Carvalho-Roucairol optimization, 136

ring size
Itai-Rodeh algorithm, 94

ring traversal algorithm, 19
root, 7

false, 175
root object, 47
rotating coordinator crash consensus

algorithm, 116
routing, 53

Chandy-Misra algorithm, 53, 202
link-state algorithm, 67
Merlin-Segall algorithm, 55, 202
Toueg’s algorithm, 58, 203

routing table, 53

safe process, 102
safety property, 9

230 Index

Safra’s termination detection algorithm, 42,
201

scheduler, 182
earliest deadline first, 184
least slack-time first, 184
offline, 182
online, 183
rate-monotonic, 183

self-stabilization, 171
Afek-Kutten-Yung spanning tree

algorithm, 177, 218
Arora-Gouda spanning tree algorithm,

175
Dijkstra’s token ring, 171

send event, 8
sense-reversing barrier, 161
server

background, 185
deferrable, 186
polling, 186
slack stealing, 185
total bandwidth, 186

set, 2, 193
shared memory, 145
Shavit-Francez termination detection

algorithm, 39, 198
simple synchronizer, 101
single-reader register, 145
single-writer register, 145
sink tree, 7
slack, 183
slack stealing server, 185
snapshot, 13

Chandy-Lamport algorithm, 14, 194
consistent, 13
Lai-Yang algorithm, 15, 194
local, 13

spanning tree, 7
Afek-Kutten-Yung algorithm, 177, 218
Arora-Gouda algorithm, 175
minimum, 80

spinning, 147
sporadic job, 182
sporadic task, 182
starvation-freeness, 135
state, 8

channel, 13
store-and-forward deadlock, 65
strongly accurate failure detector, 115

symmetric configuration, 87
synchronizer, 101

α, 102
β, 102
γ, 103
Awerbuch’s, 102, 211
simple, 101

synchronous communication, 8
synchronous system, 101

Tarry’s traversal algorithm, 20
task, 182

aperiodic, 182
periodic, 182
sporadic, 182

terminal configuration, 8
termination, 111
termination detection, 37

Dijkstra-Scholten algorithm, 38
Rana’s algorithm, 40, 200
Safra’s algorithm, 42, 201
Shavit-Francez algorithm, 39, 198
weight-throwing algorithm, 39, 199

test-and -set , 145
test-and-set lock, 153
test-and-test-and-set lock, 154
thread, 145
time-to-live field, 67
token, 19
total bandwidth server, 186
total order, 3
Toueg’s routing algorithm, 58, 203
tournament barrier, 165
tournament tree, 148
tracing garbage collection, 51
transition, 8
transition relation, 8
transition system, 8
traversal, 19

breadth-first search algorithm, 55
depth-first search algorithm, 21
ring algorithm, 19
Tarry’s algorithm, 20

tree
breadth-first search, 55
depth-first search, 21
sink, 7
spanning, 7

minimum, 80

Index 231

tournament, 148
tree algorithm, 23, 197
tree edge, 7
tree election algorithm, 77

undirected channel, 7
undirected network, 7
utilization, 182

valid message, 131
validity, 111, 121

vector clock, 10

wait-for graph, 27
wave, 19

echo algorithm, 24, 197
tree algorithm, 23, 197

weakly accurate failure detector, 116
weight-throwing termination detection

algorithm, 39, 199
weighted reference counting, 49
working memory, 146

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	1 Introduction
	I Message Passing
	2 Preliminaries
	3 Snapshots
	4 Waves
	5 Deadlock Detection
	6 Termination Detection
	7 Garbage Collection
	8 Routing
	9 Election
	10 Anonymous Networks
	11 Synchronous Networks
	12 Crash Failures
	13 Byzantine Failures
	14 Mutual Exclusion

	II Shared Memory
	15 Preliminaries
	16 Mutual Exclusion II
	17 Barriers
	18 Self-Stabilization
	19 Online Scheduling

	Pseudocode Descriptions
	References
	Index

