
 1

Introduction

A computer consists of a set of physical components (hardware) and system
programs (system software) that are responsible for data processing according to an
algorithm, specified by the user through an application program (application software).

Computer systems have conventionally been defined through their interfaces at a
number of abstraction levels, each providing functional support to its predecessor.
Included among the levels are the application programs, the high-level languages, and
the set of machine instructions.

In the past, the term computer architecture often referred only to instruction set
design that represents an interface between hardware and the lowest level software -
machine instructions (binary coded programs).

A different definition of computer architecture is built on four basic viewpoints:
- structure (defines the interconnection of various hardware components),
- organization (defines the dynamic interplay and management of the various

components),
- implementation (defines the detailed design of hardware components),
- performance (specifies the behavior of the computer system).

Computer’s generations

First manual calculator – abacus, appears in China in about 2600 BC (before
Christ). First mechanical calculator that can add and subtract was invented in 1642 by
the French philosopher Blaise Pascal.

Modern electronic computers are typically grouped into four "generations." Each
generation is marked by improvements in basic technology. Each advance has resulted
in computers of lower cost, higher speed, greater memory capacity, smaller size and
power consumption.

1. First Generation (1945–1954) based on vacuum tube invented in 1906 by an
electrical engineer named Lee De Forest. (general-purpose computers: ENIAC
(Electronic Numerical Integrator and Computer)- 18,000 vacuum tubes, 30.5 meters, 10-
digit registers for temporary calculations; Colossus - 1,500 vacuum tubes, UNIVAC -
5,000 vacuum tubes). These early machines were typically controlled by plug board
wiring.

2. Second Generation (1955–1964) based on transistors invented in the mid-
1940s by John Bardeen (1908–1991), William B. Shockley (1910–1989), and Walter H.
Brattain (1902–1987). In this period appears and first supercomputers: UNIVAC LARC
- Livermore Atomic Research Computer and IBM 7030 - named Strech Computer), used
for weather prediction, nuclear research and artificial intelligence. These second
generation machines were programmed in languages such as COBOL (Common

 2

Business Oriented Language) and FORTRAN (Formula Translator). Magnetic disks and
tape were often used for data storage. Appears the concept of parallel processing.

3. Third Generation (1965–1978) based on integrated circuits invented by Jack
Kilby and Robert Noyce. The integrated circuit is a single device that contains many
transistors. Computers: IBM System/360 - was able to execute 500,000 additions per
second. This computer was about 263 times as fast as the ENIAC. During the third
generation of computers, the central processor was constructed by using many integrated
circuits. It introduced single computer architecture over a range or family of devices. In
other words, a program designed to run on one machine in the family could also run on
all of the others. IBM spent approximately $5 billion to develop the System/360.
Appears first minicomputers. The important characteristics of the computers of this
generation: operating systems, multiprogramming, multiprocessing and virtual memory.

4. Fourth Generation (1979–?) based on the microprocessors. Microprocessors
used Large Scale Integration (LSI) and Very Large Scale Integration (VLSI) techniques
to pack thousands or millions of transistors on a single chip. Advantages: speed, high
integration ratio, high reliability, small costs and dimensions.

A common law that governs the world of microprocessors is Moore's Law.
Moore's Law states that the numbers of transistors on a single chip at the same price will
double every 18 to 24 months. Current microprocessor chips contain millions of
transistors and the number is growing rapidly.

First microprocessor: Intel Company, I4004 – 4 bits organization (built in 1971) was
the first processor to be built on a single silicon chip. It contained 2,300 transistors.
First successful microprocessor: Intel I8080 – 8 bits processor (1972).
First 16 bits processor: Intel I8086 (1978).
First 32 bit processor: Intel I80386 (1985).
Superscalar microprocessor architecture: Pentium Pro (1990)
64 bits processors, multi-core architectures: Pentium D, Core 2 Duo, Xeon (Intel),
Other microprocessor families:
Motorola: 6800 (8 biti), 68000 (16 biti), 68020, 68030 (32 biti), 68040,
Zilog: Z80, Z8000

 Texas Instruments: - digital signal processors: TMS320c10/20/30/50/80
 Microchip: microcontrollers: PIC12/16/18
 MIPS (Microprocessor without Interlocked Pipeline Stages) , ARM (Advanced RISC
Machine), etc.

Tendencies and perspectives

1. Increase of integration ration - smaller switching elements (transistors): 45-
>35nm, increase of switching elements’ number, processors - over 1 billion
transistors, memory – over 64-512 billion;

2. Power reduction - intelligent power distribution, dynamic power control: energy
where and when it is needed, frequency limitation;

 3

3. Multi-core and multi-thread architectures (from 2 cores/chip to 128 cores and
more, symmetric and asymmetric architectures (see Intel and Power PC);

4. Network-on-chip - network communication inside the chip instead of parallel
buses;

5. Memory hierarchies - more cache memory levels (inside the processor), virtual
memory, access request anticipation;

6. External memories of silicon - no more hard and floppy disks of DVDs, flash
instead;

7. Multi-processor architectures - parallel architectures, distributed architectures;
8. Computer networks - Internet – an indispensable computer resource, wireless

networks;
9. Mobile and portable computers: laptops, graphic tablets, PDA (personal digital

assistant) also known as a palmtop computer, or personal data assistant, is
a mobile device that functions as a personal information manager. , GPS (Global
Positioning System), intelligent phones.

Technological development

Computer technology has shown an unprecedented rate of improvement. This

includes the development of processors and memories. The integration of numbers of
transistors into a single chip has increased from a few hundred to millions. This
impressive increase has been made possible by the advances in the fabrication
technology of transistors.

The scale of integration has grown from small-scale (SSI) to medium-scale (MSI),
then to large-scale (LSI), then to very large-scale integration (VLSI), and currently to
wafer scale integration (WSI).

 Numbers of Devices per Chip
Integration Technology Typical number of devices Typical functions
 SSI Bipolar 10–20 Gates and flip-flops
 MSI Bipolar & MOS 50–100 Adders & counters
 LSI Bipolar & MOS 100–10,000 ROM & RAM
 VLSI CMOS (mostly) 10,000–5,000,000 Processors
 WSI CMOS 5,000,000 DSP & special purposes

1. Computer components

 Virtually, all contemporary computer designs are based on concepts developed by
John von Neumann. Such a design is referred to as the von Neumann architecture and is
based on three concepts:

1. Data and instructions are stored in a single read/write memory.

 4

2. The contents of this memory are addressable by location, without regard to the
type of data contained there.

3. Execution occurs in a sequential fashion from one instruction to the next.

The basic Von Neumann architecture:

Computer

Central Unit

CPU
Main

Memory

ALU Reg

Control Unit

Buffers

Peripheral Devices

I/O system

System
Bus

The structural description of a computer consists of the following three basic blocks:
1. CPU (Central Processing Unit).
2. Main memory.
3. Input/Output system.

CPU consists of Control Unit, ALU (Arithmetic and Logic Unit) and registers and
represents a general purpose processor in contrast with specialised processors (I/O
processor, arithmetic processor) with a set of instructions, which means that it recognize
and execute a set of instructions in a binary form.

CPU and main memory forms a Central Unit .
A Central Unit, Input/Output System and a set of system programs forms a

computer.
A computer and peripheral devices forms a computer system. If a microprocessor

is used, it can be named also and a microcomputer system.
Main memory (also named and internal memory) consists of a set of locations,

defined by sequentially numbered addresses. Each location contains a binary number
that can be interpreted as either an instruction or data. The internal memory can be of 2
types: ROM (Read Only Memory) and RAM (Random Access Memory).

 5

I/O system transfers data from external devices to CPU and memory and vice
versa. It contains internal buffers for temporarily holding these data until they can be
sent on.

Peripheral devices: External memory devices (hard-disc, floppy-disc, compact-
disc); input devices (keyboard, mouse); output devices (printer, monitor).

Data and instructions are communicated with the computer using input devices,
the results are sent to output devices.
 CPU interchanges with other components with data (operands and results),
instructions, addresses, control signals. The communication is executed through buses.
There are 3 types of buses: Address, Data and Control buses. Al they form the system
bus.

Address bus: carries the address of a unique memory or input/output (I/O)
device.

Data bus: carries data stored in memory (or in I/O device) to the CPU or
from the CPU to the memory (or I/O device).

Control bus: is a collection of control signals that coordinate and synchronize the
whole system.

CPU
Main

memory
I/O

system

Data Bus

Address Bus

Control BusS
ys

te
m

 B
us

2. Central Processing Unit
2.1. CPU basics

A typical CPU has three major components:
(1) register set,
(2) arithmetic logic unit (ALU),
(3) control unit (CU).
The register set differs from one computer architecture to another. It is usually a

combination of general-purpose and special purpose registers.
The ALU provides the circuitry needed to perform the arithmetic, logical and shift

operations demanded of the instruction set. It also generates information about carry,
overflow and other special cases. It consists of combinational logic circuits: adders,
decoders, encoders, multiplexers and a set of registers (ex. accumulator), used as a fast
memory in arithmetic and logic operations.

The control unit is the entity responsible for fetching the instruction to be
executed from the main memory and decoding and then executing it.

 6

The main components of the CPU and its interactions with the memory system
and the input/output devices:

2.2. The register set

The register set is usually a combination of general-purpose and special purpose

registers.
General-purpose registers can be used for multiple purposes and assigned to a

variety of functions by the programmer. Special-purpose registers are restricted to only
specific functions.

Examples of special purpose registers
Two main registers are involved in fetching an instruction for execution:
- the program counter (PC) (is the register that contains the address of the next

instruction to be fetched). After a successful instruction fetch, the PC is updated to point
to the next instruction to be executed.

 -the instruction register (IR) in which the fetched instruction is loaded
Two registers are essential in memory write and read operations:
- the memory data register (MDR)
- memory address register (MAR).
The MDR and MAR are used exclusively by the CPU and are not directly

accessible to programmers.
In order to perform a write operation into a specified memory location, the MDR

and MAR are used as follows:
1. The word to be stored into the memory location is first loaded by the CPU into MDR.
2. The address of the location into which the word is to be stored is loaded by the

CPU into a MAR.

 7

3. A write signal is issued by the CPU.
Similarly, to perform a memory read operation, the MDR and MAR are used as

follows:
1. The address of the location from which the word is to be read is loaded into the MAR.
2. A read signal is issued by the CPU.
3. The required word will be loaded by the memory into the MDR ready for use

by the CPU.
Some architectures contain a special program status word (PSW) register or a

Flag register. The PSW contains bits that are set by the CPU to indicate the current
status of an executing program. These indicators are typically for arithmetic operations,
interrupts, memory protection information, or processor status.

2.3. Instruction cycle

The basic function performed by a computer is execution of a program, which

consists of a set of instructions stored in memory. The CPU reads (fetch) instructions
from memory one at a time and executes each instruction. Program execution consists of
repeating the process of instruction fetch and execution.

The processing required for a single instruction is called an instruction cycle. It
consists of two steps: fetch cycle and execute cycle. The instruction cycle is the
multiple of the clock signal.

The fetched instruction is loaded into the IR. The processor interprets a binary
code of the instruction and executes the required action: reads and writes data from and
to memory, and transfers data from and to input/output devices.

A typical and simple instruction cycle can be summarized as follows:
1. Instruction address calculation: determine the address of the next instruction

to be executed by adding a fixed number to the address of the previous instruction in PC.
2. Instruction fetch: Read the instruction from its memory location and store it

into IR.
3. Instruction decoding: analyze instruction to determine type of operation to be

performed and operands to be used.
4. Operands address calculation, if needed.
5. Operand fetch: fetch the operand from memory and store it in CPU registers,

if needed.
6. Instruction execution.
7. Results store: results are transferred from CPU registers to memory, if needed.
The instruction cycle is repeated as long as there are more instructions to execute.
A check for pending interrupts is usually included in the cycle. Examples of

interrupts include I/O device request, arithmetic overflow, division by zero, etc.
Interrupts are provided primarily as a way to improve processing efficiency. For
example, most external devices are much slower than a processor. With interrupts; the

 8

processor can be engaged in executing other instructions while an I/O operation is in
progress. .

To accommodate interrupts, an interrupt cycle is added to the instruction cycle. In
the interrupt cycle, the processor checks to see if any interrupts have occurred. If no
interrupts are pending, the processor proceeds to the fetch cycle for the next instruction.
If an interrupt is pending, the processor suspends execution of the current program,
saves the address of the next instruction and relevant data. Then it sets the PC to the
starting address of an interrupt handler routine.

Start
Fetch
cycle

Execute
cycle

Halt

Interrupt
enabled

Interupt
disabled

Interrupt
cycle

The actions of the CPU during an instruction cycle are defined by micro-orders

issued by the control unit. These micro-orders are individual control signals sent over
dedicated control lines. For example, let us assume that we want to execute an instruction that
moves the contents of register X to register Y and both registers are connected to the data bus, D. The
control unit will issue a control signal to tell register X to place its contents on the data bus D. After
some delay, another control signal will be sent to tell register Y to read from data bus D.

2.4. I8086 microprocessor architecture

The I8086 microprocessor architecture consists of two sections:
• the execution unit (EU)
• the bus interface unit (BIU)
These two sections work simultaneously. BIU accesses memory and peripherals

while the EU executes the instructions previously fetched. Thus, Intel implemented the
concept of pipelining. Pipelining is the simplest form to allow the CPU to fetch and
execute at the same time.

 9

It only works if BIU keeps ahead of EU. Thus BIU has a buffer of queue. (6
bytes). If the execution of any instruction takes to long, the BIU is filled to its maximum
capacity and busses will stay idle. It starts to fetch again whenever there is 2-byte room
in the queue.

When there is a jump instruction, the microprocessor must flush out the queue.
When a jump instruction is executed BIU starts to fetch information from the new
location in the memory. In this situation EU must wait until the BIU starts to fetch the
new instruction. This is known as branch penalty.

Execution Unit
 The Execution Unit executes all instructions, provides data and addresses to the

Bus Interface Unit and manipulates the general registers and the Processor Status Word
(Flags register).

The 16-bit ALU performs arithmetic and logic operations, control flags and
manipulates the general registers and instruction operands.

The Execution Unit does not connect directly to the system bus. It obtains
instructions from a queue maintained by the Bus Interface Unit. When an instruction

 10

requires access to memory or a peripheral device, the Execution Unit requests the Bus
Interface Unit to read and write data.

Bus Interface Unit
 The Bus Interface Unit facilities communication between the EU and memory or
I/O circuits. It is responsible for transmitting address, data, and control signals on the
buses. This unit consists of the segment registers, the Instruction Pointer, internal
communication registers, a logic circuit to generate a 20 bit address, bus control logic
that multiplexers data and address lines, the instruction code queue (6 bytes RAM).

2.5. Registers set of I8086
1. General Purpose Registers
 The CPU has eight 16-bit general registers. The general registers are subdivided
into two sets of four registers. These sets are the data registers (also called the H & L
group for high and low) and the pointer and index registers (also called the P & I group).

 The data registers can be addressed by their upper or lower halves. Each data
register can be used interchangeably as a 16-bit register or two 8-bit registers. The
pointer and index registers are always accessed as 16-bit values. The µp can use data
registers without constraint in most arithmetic and logic operations. Arithmetic and logic
operations can also use the pointer and index registers. Some instructions use certain
registers implicitly allowing compact encoding.
SP - Stack Pointer : Always points to top item of the stack.
BP - Base Pointer: It is used to access any item in the stack;
SI - Source Index: Contains the address of the current element in the source string;
DI - Destination Index: Contains the address of the current element in the destination
string;

 11

2. Segment registers

 The mp 8086 has a 20-bit address bus for 1 Mbyte external memory but inside the
CPU registers have 16 bits that can access 64 Kbytes. The 8086 family memory space is
divided into logical segments of up to 64 Kbytes each. The segment registers contain the
base addresses (starting locations) of these memory segments.

• CS (code segment) - points at the segment containing the current program.
• DS (data segment)- generally points at the segment where variables are defined.
• ES (extra segment)- extra segment register, it's up to a coder to define its usage.
• SS (stack segment)- points at the segment containing the stack.

3. Special purpose registers

IP - the instruction pointer or program counter: Always points to next instruction to
be executed. It contains the offset (displacement) of the next instruction from the start
address of the code segment.
Flags Register - determines the current state of the processor. It is also called PSW
(processor state word). From 16 bits are used only 9. Flags Register is modified
automatically by CPU after mathematical operations, this allows to determine the type
of the result, and to determine conditions to transfer control to other parts of the
program. Generally you cannot access these registers directly.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 Of df if tf sf Zf Af pf cf

All flags can be divided into condition (status) flags and control (system) flags.

Condition flags:
• 0 bit -Carry Flag (CF) - this flag is set to 1 when there is a carry (borrow) from

the 8 or 16 bit in addition or subtraction operation. For example when you add

 12

bytes 255 + 1 (result is not in range 0...255). When there is no a carry or borrow
this flag is set to 0. It is also used to store the value of the MSB in shift operations.

• 2 bit - Parity Flag (PF) - this flag is set to 1 when there is even number of one
bits in result, and to 0 when there is odd number of one bits. Even if result is a
word only 8 low bits are analyzed!

• 4 bit - Auxiliary Flag (AF) - set to 1 when there is an unsigned overflow for low
nibble (4 bits).

• 6 bit - Zero Flag (ZF) - set to 1 when result is zero. For none zero result this flag
is set to 0.

• 7 bit - Sign Flag (SF) - set to 1 when result is negative. When result is positive it
is set to 0. Actually this flag take the value of the most significant bit.

• 11 bit - Overflow Flag (OF) - set to 1 when there is a signed overflow. For
example, when you add bytes 100 + 50 (result is not in range -128...127).

Control flags:
• 8 bit - Trap Flag (TF) System flag - Used for on-chip debugging (pas cu pas)

when TF=1. In this case the interrupt is generated (int 1) which calls a special
routine to show the state of internal registers. There are no instructions to change
this flag. The content of PSW is written in one general Rg through the stack to can
change it.

• 9 bit - Interrupt enable Flag (IF) System flag - when this flag is set to 1 CPU
reacts (se permit) to interrupts on INTR input of the mp from external devices.
When IF=0 interrupts are not allowed (masked). IF do not react to NMI (non
maskable) interrupts and to internal interrupts performed by instruction INT.
Instructions CLI (clear interrupt) and STI (set interrupt) are used to control this
flag.

• 10 bit - Direction Flag (DF) - this flag is used by some instructions to process
data chains, when this flag is set to 0 - the processing is done forward (increment
of SI and DI registers), when this flag is set to 1 the processing is done backward
- decrement (instructions CLD and STD).

Exercises

Determine the value of CF, ZF, SF, OF, PF and AF after the following addition
operations:
1. 342Ah+57E2h=8C0Ch
2. E42Ah+96B8h=7AE2h
3. C739h+38C7h=0000h
4. F502h+1A7h =F6A9h
5. 6BD3h+90F1h=FCC4h

 13

3. Instruction set architecture
The instruction set architecture (ISA) includes:

- instruction set in a binary code (machine language) that is recognized by a
processor;

- data types with which instructions can operate;
- environment in which instructions operate.
ISA is an interface between software and hardware:

Program in a high
level language

Program in ASM

ISA level

Hardware

Compilation to machine
language program

Assembler to machine
language program

ISA program executed by a
microprogram or hardware

Software

Hardware

Technically, CPUs come in two main architectures:
- CISC (Complex Instruction-Set Computing)
- RISC (Reduced Instruction-Set Computing).
CISC chips (Motorola 68k and Intel x86 architectures) sacrifice speed in favour of

having a complete set of built-in instructions on the chip. RISC chips (Power PC, ARM,
SPARC) contain fewer instructions but can execute their tasks much faster.

A computer program can be represented at different levels of abstraction. A
program could be written in a machine-independent, high-level language such as Java or
C++.

A computer can execute programs only when they are represented in machine
language specific to its architecture.

A machine language program for a given architecture is a collection of machine
instructions represented in binary form that are recognised by a Control Unit (CU).
According to this binary code, CU selects a certain transition states algorithm and
generates control signals to ALU and registers. The algorithm can be microprogramed or
hardwired.

Programs written at any level higher than the machine language must be translated
to the binary representation before a computer can execute them.

An assembly language program is a symbolic representation of the machine
language program.

Converting the symbolic representation into machine language is performed by a
special program called the assembler.

Although high-level languages and compiler technology have witnessed great
advances over the years, assembly language remains necessary in some cases.

 14

- Programming in assembly can result in machine code that is much smaller and
much faster than that generated by a compiler of a high-level language. Small and fast
code could be critical in some embedded and portable applications, where resources may
be very limited. In such cases, small portions of the program that may be heavily used
can be written in assembly language.
- Assembly programmers have access to all the hardware features of the target
machine that might not be accessible to high-level language programmers.
- learning assembly languages can be of great help in understanding the low level
details of computer organization and architecture.

Machine language is the native language of a given processor. Since assembly
language is the symbolic form of machine language, each different type of processor has
its own unique assembly language. Before we study the assembly language of a given
processor, we need first to understand the details of that processor. We need to know the
memory size and organization, the processor registers, the instruction format, and the
entire instruction set.

3.1 Main memory model

 Instructions and data are stored in main memory.
 The (main) memory can be modeled as an array of millions of adjacent cells, each
capable of storing a binary digit (bit), having value of 1 or 0. These cells are organized
in the form of groups of fixed number of cells.

An entity consisting of 8 bits is called a byte, of 16 bits – a word, of 32 bits – a
double word. It is, however, customary to express the size of the memory in terms of
bytes. For example, if the size of a memory of a personal computer is 256 Mbytes, that
is, 256 x 220 =228 bytes.

In order to be able to move a byte in and out of the memory, a distinct address has
to be assigned to each byte.

The number of bits, l, needed to distinctly address M bytes in a memory is given
by 2logl M= . For example, if the size of the memory is 1 MB, then the number of bits in
the address is 20

2log (2) 20= bits. Alternatively, if the number of bits in the address is l,
then the maximum memory size (in terms of the number of bytes that can be addressed
using these l bits) is 2lM = .
 7 0

FFFFF
FFFFE
FFFFD
…….
…….
10000
0FFFF
…….
00001
00000

 15

The addressable memory of I8086 contains 220 bytes (1 Mb). The physical
addresses are within the range 00000-FFFFFh.

Locations 0H-7FH (128 bytes) and FFFF0-FFFFF (16 bytes) are reserved for
special use (interrupts and system start after reset)

Any 2 neighbour bytes can store a word (16 bits). The smaller address contains
the smaller byte. The address of the word is the address of its smaller byte. So, one
address can be viewed as a byte address and a word address. This strategy to store
data is called Little Endian (the opposite strategy is called Big Endian and it applied
by Motorola, Spark and most RISC machines).

 22 H Unaligned
 21 H DW
 20 h DB
 24B H 46 1F H Aligned
 24A H 00 1E H DW
 249 H 65 1D H DB
 248 H 3A 1C H DB

247 H 8C 1B H Instruction
246 H 04 1A H

 19 H Instruction

The value of a binary word at address 246H is 8C04 H, of a DD at address 248 H

- 4600653A.
The word with even address is called aligned. The word with odd address is called

unaligned. The mp transfer words with even addresses in 1 memory access cycle and
words with odd addresses in 2 cycles. That’s why it’s recommended to store data on
even addresses.

3.2 Memory segmentation

Segmentation provides a powerful memory management mechanism:
1. It allows programmers to partition their programs into modules that operate

independently of one another.
2. Segments provide a way to easily implement object-oriented programs.
3. Segments allow two processes to easily share data.
4. It allows extending the addressability of a processor. In the case of the

8086, segmentation let Intel's designers extend the maximum addressable
memory from 64KB to 1MB.

Disadvantage: Difficulties with physical address manipulation in programs.

 16

Memory looks like a linear array of bytes. A single index (address) selects some
particular byte from that array. Segmented addressing uses two components to specify a
memory location: a segment value and an offset within that segment.

A full segmented address contains a segment component and an offset component
- segment:offset.

On the 8086 through the 80286, these two values are 16 bit constants. On the
80386 and later, the offset can be a 16 bit constant or a 32 bit constant.

The size of the offset limits the maximum size of a segment. On the 8086 with 16
bit offsets, a segment may be no longer than 216=26*210=64KB; it could be smaller
(and most segments are), but never larger. The 80386 and later processors allow 32 bit
offsets with segments as large as 232=22*230=4GB.

The segment portion is 16 bits on all 80x86 processors. This lets a single program
have up to 65,536 different segments in the program.

All memory space is considered as a set of 64 Kbyte size segments. The segments
are defined for each application. Segments are considered to be independent and
uniquely addressable. For each program can be currently addressed 4 segments using
CS, DS, ES and SS. Memory segments can be different, can have common memory
spaces or can even coincide. Segment rgs are initialised at the beginning of the
application. They contain the base (low) address of the segment which is always a
multiple of 16 (4 low bits are considered 0).

segment A segment B

segment C

segment D

segment E

0 H 10000 H 20000 H 30000 H

Physical address calculation
Despite the fact that the 80x86 family uses segmented addressing, the physical

memory connected to the CPU is still a linear array of bytes.
Addresses in the programs - logical addresses.
The linear address that appears on the address bus - physical address.

Logical address notation segment: offset

 17

Physical address calculation segment*10H+offset
Segment*10H is equivalent to 1 hexadecimal (4 bits) shift left. To calculate the

physical address in BIU the base address is shift 4 bits left and the offset is added.
 For example if (CS)=123A h and (IP)=341B h, the physical address will be

123 0

341

157

A the base address of the segment

B offset
BB a physical address

The carry from MSB is ignored that give the possibility of ring memory
organization: after FFFFF byte follows 00000 byte. It is true for segments also.

Sources of physical address:

Type of memory access Implicit segment Alternative segment Offset

Instruction fetch CS - IP

Stack operation SS - SP

Variable DS CS, ES, SS EA

String source DS CS, ES, SS SI

String destination ES - DI

BP as base Rg SS CS, DS, ES EA

EA – effective address. EA is the offset of a variable that is calculated by EU according to the
memory addressing mode specified in the instruction for this variable. There are a total of 17 different
memory addressing modes on the 8086. By default BX, SI and DI registers work with DS segment
register;
Exercises
Memory organization

1. Calculate the physical address according to the following logical addresses:
a) 1205H : 709H,
b) ABCDH : 89ABH,
c) FFF0H : 0FFH,
d) 3333H : 4444H,
e) 8000H : 8000H.

2. Calculate the offset according to the following physical addresses (CS=2000H) :
a) 20002H,
b) 20010H,
c) 20300H,
d) 24000H,
e) 2FFFFH.
3. Calculate CS according to the following physical addresses (offset is 400H) :
a) 10400H,
b) B0400H,

 18

c) 30800H,
d) CDE00H,
e) FFFF0H.
4. Which of the following physical addresses belong to the segment with CS=2400H:
a) 33FFFH,
b) 23000H,
c) 27890H,
d) 33000H,
e) 34000H.
5. Physical address of the variable is 358BC H when CS=3234 H. Calculate the physical address of the
variable when CS is changing 4310 H.

3.3. Stack memory

A stack memory is a small area of reserved memory used in the following cases:
1. To store temporary the data from general purpose registers;
2. To store the content of PSW, CS and IP when an interrupt or a procedure is

processed:
3. To transmit the procedures parameters.
The stack organization principle is LIFO.
Stack location is determined by SS:SP. SS holds the base address of stack and SP

holds the offset of the top of the stack (the most recent stack entry). Instructions to
operate with stack are:

PUSH - Copy specified word to top of the stack.
POP - Copy word from top of the stack to specific location.

SS (Base)

SP(Top)

Stack limit

Main memory

Reserved
stack
block

000000

FFFFFF

CPU registers

Free

In use

According to Intel convention the stack grows from higher addresses to lower

addresses (according to Motorola convention the stack grows from lower addresses to
higher addresses). The base of the stack (SS) is at the high address end of the reserved
stack block and the limit is at the low address end. If all stack elements are 16-bit words
(2 bytes), instruction PUSH will cause the decrement of SP with 2 and POP will cause
the increment of SP with 2.

 19

 Instruction format

 Assembly language is the symbolic form of machine language. Assembly
programs are written with short abbreviations that represents the actual machine
instruction called mnemonics.
. The use of mnemonics is more meaningful than that of hex or binary values,
which would make programming at this low level easier and more manageable.
 Examples: Mov - move, Add – addition, Sub – subtraction, Mul – multiplication.

An assembly program consists of a sequence of assembly statements, where
statements are written one per line. Each line of an assembly program is split into the
following four fields: label, operation code (opcode), operand, and comments.

Labels are used to provide symbolic names for memory addresses. A label is an

identifier that can be used on a program line in order to branch to the labeled line. It can
also be used to access data using symbolic names. The operation code (opcode) field
contains the symbolic abbreviation of a given operation. The operand field consists of
additional information or data that the opcode requires. The operand field may be used
to specify constant, label, immediate data, register, or a memory address. The comments
field provides a space for documentation to explain what has been done for the purpose
of debugging and maintenance. In I8086 instruction consists from one to six bytes.

According to the length of the instructions exists two types of ISA:
1. With fixed length instructions (commonly used in RISC architectures)
2. With variable length instructions (commonly used in CISC architectures)
The advantage of using variable length instructions is that they reduce the amount

of memory space required for a program. In I8086 instructions are from one byte to a
maximum of 6 bytes in length.

The advantage of fixed length instructions is that they make the job of fetching
and decoding instructions easier and more efficient, which means that they can be
executed in less time than the corresponding variable length instructions.

Instructions can be classified based on the number of operands as: three-address,
two-address, one-address, and zero-address.

Examples:
3 addresses Add x,y,z (z)=(x)+(y)
2 addresses Add ax,bx (Ax)=(ax)+(bx)
1 addresses Mul bl (Ax)=(al)*(bl)
0 addresses Push bx Top of the stack ← (bx)

 20

Three-address instruction formats are not common, because they require a
relatively long space to hold all addresses.

In two-address instruction one address is an operand and also a result.
In one-address instruction a second address is implicit. Usually it is the

accumulator AX. It is used for one operand and the result.
Zero-address instructions are applicable to stack memory and use as address the

content of SP (top of the stack).
The number of addresses per instruction is a basic design decision. Fewer

addresses per instruction result in more primitive instructions, which require a less
complex CPU. It also results in instruction of shorter length. On the other hand programs
contain more total instructions and have a longer execution time. Another problem: with
one-address instructions, the programmer has available only one general-purpose
register – the accumulator, with multiple address instructions it is common to have
multiple general-purpose registers. Because register references are faster than memory
references this speeds up execution. Most contemporary machines employ a mixture of
two- and three- address instructions.

3.5. Addressing Modes

The different ways in which operands can be addressed are called the addressing
modes. Addressing modes differ in the way the address information of operands is
specified.

EA - actual (effective) address (EA) of the location containing the operand;
The addressing modes available in 8086 are:

1. Immediate Addressing Mode:
According to this addressing mode, the value of the operand is (immediately)

available in the instruction itself.
Operand=A,

where A - the content of the address field in the instruction
Typically immediate operand represents constant data (a byte or word). The

number is stored in two’s complement form.
Examples:

mov al, 48 ; load 30H in AL;
mov cx,2056H
xor si,1 ; invert LSB in SI register;
and al,80H ; highlight MSB of AL
or di, 8000H ; set to 1 MSB of DI

The advantage of immediate addressing is that no memory reference other than
the instruction fetch is required to obtain the operand. The disadvantages: the size of the
number is restricted to the size of the address field; a change in the value of an operand
requires a change in every instruction that uses the immediate value of such an operand.

 21

2. Register Addressing Mode:

To access the content of the register it is necessary to specify the name of the
register. The eight and 16 bit registers are certainly valid operands for this instruction.
The only restriction is that both operands must be of the same size.
 mov ax, bx ;Copies the value from BX into AX
 mov dl, al ;Copies the value from AL into DL
 mov ax, ax ;Yes, this is legal and it performs nothing!
 add bx,di; bx=bx+di
 sub cl,ah ; cl=cl-ah
 Advantage: the registers are the best place to keep often used variables.
Instructions using the registers are shorter and faster than those that access memory.
 Disadvantage: limited address space and the limited number of general purpose
registers.

3. Direct Addressing mode (displacement only) (6 clock cycles)

In the direct addressing mode the address field contains the EA of the operand.
EA=A

It consists of a 16 bit constant that specifies the address of the target location.
mov al, [8088h]; loads the Al register with a copy of the byte at memory location 8088h.
mov [1234h],dl ; stores the value from the Dl register to memory location 1234h:

By default, all displacement-only values provide offsets into the data segment. If

you want to provide an offset into a different segment, you must use a segment override
prefix before your address. For example, to access location 1234h in the extra segment
(es) you would use an instruction of the form

 mov ax,es:[1234h].

You can also access words on the 8086 processors :

 22

Other examples:
BETA dw 1234h
............................
MOV CX, BETA ; move the contents of the memory location, which is offset by

BETA from the current value in DS into internal register CX.
Inc COUNT
Mul X ; multiply ax with variable X
Ror TEMP ; shift right variable TEMP

In inc, mul, ror instructions it is impossible to determine the size of a variable
 Inc word ptr COUNT

Ror byte ptr TEMP
The technique was common in earlier generations of computers but is not

common on contemporary architectures. It requires only one memory reference and no
special calculation. The disadvantage is that it provides only a limited address space.

4. Register Indirect Addressing mode: (5 clock c)
In the register indirect mode, in the instruction is included a name of a register

that holds the EA of the operand. In this case name of the register is included in
parentheses. EA=[R]

There are four forms of this addressing mode on the 8086, best demonstrated by
the following instructions:
 mov al, [bx]
 mov al, [bp]
 mov al, [si]
 mov al, [di]
The [bx], [si], and [di] modes use the ds segment by default. The [bp] mode uses the
stack segment (ss) by default.
Example:
MOV AL, [BX] ; This instruction moves the contents of the memory location DS:BX to
the AL register.

 MOV AL, [BP] ; This instruction moves the contents of the memory location
SS:BP to the AL register.

 23

add AX,[DI] ; add to AX the content of memory cell DS*10H+DI (DS:DI)

 div word ptr [SI] ; divide the word from memory
 xor [BP], DL
 This addressing mode allows calculating the address during program execution
that is useful in case of addressing of different data with one instruction.

5. Based Addressing mode: (9clock c)
In this addressing mode the register contains a memory address and the address

field contains a displasement from that address. It is a convenient means of
implementing segmentation.

In such addressing EA=disp+[BP] or [BX]. It is useful in case of addressing to
certain element in data arrays, when disp or element number is known and base address
is calculated during program execution.

The based addressing mode use the following syntax:
 mov al, disp[bx] mov al, [bx+disp]
 mov al, disp[bp] mov al, [bp+disp]
The displacement field can be a signed eight bit constant or a signed 16 bit constant.

mov AX, [BP+10] ; load in AX the 6th word of the array

If bx contains 1000h, then the instruction

mov cl,20h[bx] will load in cl the content of memory location ds:1020h.
If the length of the addressing field is K, then with one segment-base register we

can address 2K words.

6. Indexed Addressing mode: (9 clock c)

In this addressing mode, the address field contains a main memory address and

the register, called the index register, contains a positive displacement from that address.
The indexed addressing modes use the following syntax:

 mov al, disp[si] mov al, [si+disp]

 24

 mov al, disp[di] mov al, [di+disp]
The displacement field can be a signed eight bit constant or a signed 16 bit constant.

In such addressing EA=disp+[SI] or [DI]. It is useful in case of itterative
operations, when disp is the address of the first element and SI or DI value specified the
element. First they are initialised to 0 and after each operation the index register is
incremented.

Inc DI
……
Mov Z[DI], AX; move the content of AX to array element
add AX, ARRAY[SI] ; add AX with the element of ARRAY,

7. Based Indexed Addressing Mode: (7-8 clock c)

The based indexed addressing modes are simply combinations of the register

indirect addressing modes. These addressing modes form the EA by adding together a
base register (bx or bp) and an index register (si or di). The allowable forms for these
addressing modes are
 mov al, [bx][si] mov al, [bx+si]
 mov al, [bx][di]
 mov al, [bp][si]
 mov al, [bp][di]

Suppose that bx contains 1000h and si contains 880h. Then the instruction
 mov al,[bx][si]
will load al from location DS:1880h. Likewise, if bp contains 1598h and di contains
1004,

 mov ax,[bp+di]
will load the 16 bits in ax from locations SS:259C and SS:259D.
It is useful in case of addressing to certain element in two dimensional arrays or to an
array from stack (BP is the address of stack element).

8. Based Indexed Plus Displacement Addressing Mode (11-12 clock c)

 25

These addressing modes are a slight modification of the base/indexed addressing
modes with the addition of an eight bit or sixteen bit constant. The following are some
examples of these addressing modes:
 mov al, disp[bx][si]
 mov al, disp[bx+di]
 mov al, [bp+si+disp]
 mov al, [bp][di][disp]

Suppose bp contains 1000h, bx contains 2000h, si contains 120h, and di contains 5.
Then mov al,10h[bx+si] loads al from address DS:2130;

mov ch,125h[bp+di] loads ch from location SS:112A;
mov bx,cs:2[bx][di] loads bx from location CS:2007.

Generally, the more complex an addressing mode is, the longer it takes to

compute the effective address. Complexity of an addressing mode is directly related to
the number of terms in the addressing mode. For example, disp[bx][si] is more complex
than [bx].

The displacement field in all addressing modes except displacement-only can be a
signed eight bit constant or a signed 16 bit constant. If your offset is in the range -
128...+127 the instruction will be shorter (and therefore faster) than an instruction with a
displacement outside that range. The size of the value in the register does not affect the
execution time or size. So if you can arrange to put a large number in the register(s) and
use a small displacement, that is preferable over a large constant and small values in the
register(s).

If the effective address calculation produces a value greater than 0FFFFh, the
CPU ignores the overflow and the result wraps around back to zero. For example, if bx
contains 10h, then the instruction mov al,0FFFFh[bx] will load the al register from
location ds:0Fh, not from location ds:1000Fh.

3.6. Data types

 Machine instructions operate on data. The most important categories of data are:

Addresses (can be considered to be unsigned integers)
Numbers (integer or fixed point, floating point and decimal)
Characters (The most commonly used character code is ASCII code)

 26

Logical data
A variable can be viewed in any numbering system:

• HEX - hexadecimal (base 16).
• BIN - binary (base 2).
• OCT - octal (base 8).
• SIGNED - signed decimal (base 10).
• UNSIGNED - unsigned decimal (base 10).
• BCD packed (one digit – 4 bits) and unpacked (one digit – 8 bits)

DB define a byte
DW define a word
DD define a double word

X DB 104,-1
Y DW 100,200H

DATA DB 3*20, -1, 100 DUP(?),?
Packed DB 78H,56H
Unpacked DB 7H,8H,5H,6H
There are 2 type of data definition: digital and addressable.

Myseg segment
X DB 0FFH; one byte equal to FF
Y DW 1234H; one word equal to 1234
Z DW Z; one word = 0003
Var DW Var+5; one word = 000A (the offset of the variable +5)
Ate DB 5*6; one byte =1E
Ss DW ?; one word without initialisation
Myseg ends

Characters string definition: Each character is stored in one byte.
The address of the string is the address of the smaller byte.
Message DB ‘HELLO’ (ASCII code in memory H(48), E(45),
E(4C), O(4F)
Block DB 128(‘ ’) 128 spaces

3.7. Instruction types
The X86 family of processors defines a number of instruction types.
I.Data transfer instructions
1. General-purpose data transfer

 MOV dst,src (dst)←(src) copies the second operand to the first operand.

X 68
 FF
Y 64
 00

I word

 00
 02

II word

myseg 7 0
X FF 0
Y 34 1
 12 2
Z 03 3
 00 4
Var 0A 5
 00 6
ate 1E 7
ss XX 8
 XX 9

 27

 XCHG dst,src (dst)↔(src) Exchange bytes or exchange words.
2. Data transfer with stack

 PUSH src Copy specified word to top of stack.
 POP dst Copy word from top of stack to specific location.
 3. Flag transfer
 PUSHF Copy flag register to top of stack.
 POPF Copy word at top of stack to flag register
 LAHF Load AH with the low byte of the flag register. No operands
 SAHF Store AH register into low 8 bits of Flags register. No operands

4. Address transfer
 LEA reg,src Load effective address of operand in specified register. Lea SI, X
 LDS reg, src Load DS register and other specified register from memory. LDS
SI, Y where Y is dd- double word
 LES reg,src Load ES register and other specified register from memory.

5. I/O port transfer
 IN ac, port ; Copy a byte or word from specified port to accumulator (AX or
AL).
 IN ac, DX
 OUT port, ac Copy a byte or word from accumulator to specified port.
 OUT DX, ac

II. Arithmetic instructions

 Arithmetic operations are executed on integer numbers in 4 formats:
unsigned binary (byte or word) 5h - 0000 0101
signed binary (byte or word), -5h or FAh 1111 1011
packed decimal (the string of decimal digits are stored in consecutive 4-bit groups :
3251- 0011 0010 0101 0001)
unpacked decimal (each digit is stored in low 4-bit part of the byte: 3251 - ****0011
****0010 ****0101 ****0001)
 All arithmetic instructions influence flags that can be checked with conditional
transfer instructions.
 Arithmetic operations can use all addressing modes but one operand should be a
register.
ADD dst, src, dst←(dst)+(scr) src can be also immediate value of 8 or 16 bits
ADC dst,src, dst←(dst) + (src)+CF. It is used in multiple precision operations
SUB dst, src dst←(dst)-(src Subtract byte from byte or word from word.
SBB dst, src dst← (dst)-(src)-CF
INC opr , opr←(opr)+1 do not change CF.
DEC opr, opr←(opr)-1

 28

NEG opr opr←-(opr) Negate – invert each bit of a specified byte or word and add 1
(form 2’s complement).
CMP opr1, opr2 opr1-opr2 Compare two specified bytes or two specified words and
do not keep the result, just for flags(OF, SF, ZF, AF, PF, CF according to result). It is used
with conditional jump instructions.
CBW (no opr) (for signed binary) converts byte to word. If the high digit in AL is 0 then
all AH bits are 0, if high bit in AL is 1 then all AH bits are 1.
 .model small
 .data
 x db -10
 y dw 1234h
 z dw ?
 .code
 start: mov ax,@data
 mov ds,ax
 mov al, x ;AL=F6
 cbw ; converteste octetul la cuvant AX=FFF6 h
 add ax, y ;AX=122Ah
 mov z, ax
 end start

CWD convert word to double word. Works with AX and DX (high word)
MUL src (AX) ←(AL)*(src) for bytes CF and OF =1 if the high byte is not 0
 (DX:AX) ←(AX)*(src) for words
IMUL src Multiply signed byte by byte or signed word by word CF and OF =1 if the
high byte is not the extension of sign
EX. (AL)=B4 1011 0100cc (11001100)cd -76 (signed) or 180(unsigned)
 (BL)=11h(17 decimal)
 IMUL will form FAF4=-129210 CF=OF=1
 MUL will form 0BF4=306010 CF=OF=1
DIV src divisor is a byte
 (AL)) ← quotient (AX)/(src)
 (AH)) ←remainder (AX)/(src)
 divisor is a word
 (AX)) ← quotient (DX:AX)/(src)
 (DX)) ←remainder (DX:AX)/(src)
IDIV src Divide signed word by byte or signed double word by word.
(AX)=0400 102410
(BL)=B4 (-76 or 180)
DIV BL quotient (AL)=05=510 remainder (AH)=7C=12410

IDIV BL quotient (AL)=F3=-1310 remainder (AH)=24=3610

 29

Packed BCD arithmetic
DAA Decimal adjust After Addition.
 DAS Decimal adjust After Subtraction.

Unpacked BCD arithmetic

AAA - ASCII (Unpacked) BCD correction after addition
AAS - ASCII (Unpacked) BCD correction after subtraction.
AAM - ASCII adjust after multiplication
Corrects the result of multiplication of two BCD values.
Algorithm:

• AH = AL / 10
• AL = remainder

Example:
MOV AL, 15 ; AL = 0Fh
AAM ; AH = 01, AL = 05
RET

AAD - ASCII adjust before division;
Prepares two BCD values for division.
Algorithm:

• AL = (AH * 10) + AL
• AH = 0

Example:
MOV AX, 0105h ; AH = 01, AL = 05
AAD ; AH = 00, AL = 0Fh (15)
RET

III. Unconditional transfer instructions:
JMP operand , where operand can be a short, near, or far address

A jump operation reaches a short address by a one-byte offset, limited to a distance of -
128 to 127 bytes (the same segment).
A jump operation reaches near address by a one-word offset, limited to a distance of
-32,768 to 32767 bytes within the same segment (the same segment).
A far address may be another segment and is reached by a segment address and offset;
Address specification:
a) implicit
b) using PTR directive:

 JMP SHORT PTR operand
 JMP NEAR PTR operand
 JMP FAR PTR operand

 IV. Conditional transfer instructions
 All instructions have the following format: opcode data8

 30

The first byte is the operation code and the second byte is the 8- bit displacement to the
next instruction in 2-s complement system. The negative displacement means go back
and positive disp. means go forward. 8-bit displacement constraint the distance of
jumping in range of -128…127. Address of jumping (IP)-128 ... (IP)+127

These instructions are often used after a compare instruction. The terms B (below)
and A (above) refer to unsigned binary numbers. Above means larger in magnitude. The
terms G (greater than) or L (less than) refer to signed binary numbers. Greater than
means more positive.

instruction Jump
condition

function

JE, JZ ZF=1 Jump if equal/Jump if zero
JNE, JNZ ZF=0 Not Zero, Not Equal

JS SF=1 Sign
JNS SF=0 Not Sign
JO OF=1 Overflow

JNO OF=0 Not Overflow
JP, JPE PF=1 Parity, Parity Even

JNP, JPO PF=0 Not Parity, Parity Odd
JB, JNAE,

JC
CF=1 Below, Not Above or

Equal, Carry
JNB, JAE,

JNC
CF = 0 Not Below, Above or

Equal, Not Carry
JL, JNGE SF≠OF Less, Not Greater or Equal
JLE,JNG SF≠OF sau

ZF=1
Less or Equal, Not Greater

JBE, JNA CF=1 sau
ZF=1

Below or Equal, Not
Above

JNL, JGE SF=OF Not Less, Greater or Equal
JNLE, JG SF=OF şi

ZF=0
Not Less or Equal, Greater

JNBE, JA CF=0 şi ZF=0 Not Below or Equal,
Above

JNP, JPO PF=0 Not Parity, Parity Odd

Ex1.

; IF ((X > Y) AND (Z < T)) OR (A <> B) THEN C := D;
; Test the boolean expression:
mov ax, A
cmp ax, B
jne DoIF

 31

mov ax, X
cmp ax, Y
jng EndOfIf
mov ax, Z
cmp ax, T
jnl EndOfIf

DoIf: mov ax, D
mov C, ax

; End of IF statement
EndOfIF:

Ex. 2
mov al, 25 ; set al to 25.
mov bl, 10 ; set bl to 10.
cmp al, bl ; compare al - bl.
je equal ; jump if al = bl (zf = 1).
mov ah,6
mov dl, 'n'
int 21h
jmp stop ; so print 'n', and jump to stop.
equal: ; if gets here,
mov ah,6
mov dl, 'y'
int 21h
stop:
ret ; gets here no matter what.

V. Control instructions:
a) Iteration control instructions:
These instructions can be used to execute a series of instructions some number of times.
LOOP opr ;Loop through a sequence of instructions until CX= 0
LOOPE/LOOPZ opr ; Loop through a sequence instructions while ZF= l and CX ≠ 0
LOOPNE/LOOPNZ opr ;Loop through a sequence instructions while ZF=0 and CX ≠ 0
JCXZ ; Jump to specified address if CX=0

b) Processor control instructions
STC ;Set carry flag CF to 1
CLC ;Clear carry flag CF to 0
CMC ;Complement the state of the carry flag CF
STD ;Set direction flag DF to l (decrement string pointers)
CLD ;Clear direction flag DF to 0

 32

STI ;Set interrupt enable flag to 1 (enable INTR input)
CLI ;Clear interrupt enable flag to 0 (disable INTR input)

c) Execution control instructions:
HLT ;Halt (do nothing) until interrupt or reset
WAIT ; Wait (do nothing) until signal on the test pin is low
ESC ;Escape to external coprocessor such as 8087 or 8089
LOCK ;An instruction prefix. Prevents another processor from taking the bus while the
adjacent instruction executes
NOP ;No action except fetch and decode (the same function as CONTINUE in loop
operations)

VI. Logic instructions
NOT opr ; Invert each bit in a byte or word. Do not change the flags.
AND dst, src (dst) ←(dst) ∧ (src) CF=0 OF=0 ; AND the content of a byte or a word
with another byte or word.
AND al,5Bh
(al)= 95h=10010111
mask =01011010 reset to 0 bits 0,2,5,7
 al =00010010
OR dst, src (dst) ←(dst) ∨ (src) CF=0 OF=0 ; OR the content of a byte or a word with
another byte or word.
OR al,80h OR al, 10000000B
(al) = 1Ah=00011010
mask =10000000 set to 1 7-th bit
al 10011010
XOR dst, src (dst) ←(dst)⊕(src) CF=0 OF=0 ; Exclusive OR the content of a byte or a
word with another byte or word.
XOR al, 0FFh; invert all bits in AL
TEST opr1,opr2 opr1∧opr2 ; Do not store the result. It is used for flags setting.
It can be used with a mask. If any 1s bits of mask correspond to 1s bits of operand then
ZF=0, over wise ZF=1.
As usual after TEST are used JZ or ZNZ instructions
Example : al=10101101
 not al al=01010010
 Test al,81h mask=10000001
 jz exit test =00000000

Example. Find the absolute value of the number.

Mov ax, 8111h 1000 0001 0001 0001

 33

cwd ; replicate the high bit into DX 1111111…..
 xor ax, dx ; take 1's complement if negative; no change if positive 7EEEh
 sub ax, dx ; AX is 2's complement if it was negative The standard 7EEFh

mov bx,8111h
 and bx, bx ; see if number is negative
 jns notneg ; if it is negative... jump not sign
 neg bx ; ...absolute value or make it positive if SF=1
notneg: ; jump to here if positive

VII. Shift instructions
SHL/SAL opr, cnt ;Logic/arithmetic shift left

SHR opr, cnt ;Logic shift right, put zero(s) in MSB(s)

SAR opr,cnt ; Arithmetic shift right, copy old MSB into new MSB

Influence all flags except AF

Rotate instructions
ROL opr, cnt ;Rotate bits of byte or word left, MSB to LSB and to CF

ROR opr, cnt ;Rotate bits of byte or word right, LSB to MSB and to CF

RCL opr, cnt ;Rotate bits of byte or word left, MSB to CF and CF to LSB

RCR opr, cnt ;Rotate bits of byte or word right, LSB to CF and CF to MSB

 34

Influence only CF and OF. In all cases in 1-bit shift OF=1 if the MSB is changed
and OF=0 otherwise.
Cnt can be 1, variable that is equal to 1 or register CL with any value.

We can multiply or divide numbers with logic (for unsigned numbers) and with
arithmetic (for signed numbers) shifts.
6*2 00000110*10 =00001100
-6/2 11111010*10= 11111101 (-3)

VIII. String instructions

A string is a series of bytes or a series of words in sequential memory locations. A
string often consists of ASCII character codes. A ”B” in a mnemonic is used to
specifically indicate that a string of bytes is to be acted upon. A ”W” in the mnemonic is
used to indicate that a string of words is to be acted upon.
MOVS/MOVSB/MOVSW
Copy byte /word from DS:[SI] to ES:[DI]. Update SI and DI.
 ES:[DI] = DS:[SI]

• if DF = 0 then
o SI = SI + 1 (2)
o DI = DI + 1 (2)

else
o SI = SI - 1 (2)
o DI = DI - 1 (2)

CMPS/CMPSB/CMPSW
Compare bytes/words: ES:[DI] and DS:[SI].
 DS:[SI] - ES:[DI]

• set flags according to result:
OF, SF, ZF, AF, PF, CF

• if DF = 0 then
o SI = SI + 1 (2)
o DI = DI + 1 (2)

else
o SI = SI - 1 (2)
o DI = DI - 1 (2)

SCAS/SCASB/SCASW
Compare bytes/words: AL/AX and ES:[DI].
ES:[DI] – AL/AX

 35

• set flags according to result:
OF, SF, ZF, AF, PF, CF

• if DF = 0 then
o DI = DI + 1 (2)

else
o DI = DI - 1 (2)

LODS/LODSB/LODSW
Load byte from DS:[SI] into AL or string word into AX. Update SI.
AL/AX = DS:[SI]

• if DF = 0 then
o SI = SI + 1 (2)

else
o SI = SI - 1 (2)

STOS/STOSB/STOSW
Store byte from or word from AL/ AX into ES:[DI]. Update DI.
 ES:[DI] = AL/AX

• if DF = 0 then
o DI = DI + 1(2)

else
o DI = DI - 1 (2)

XLATB
Translate byte from table.
Copy value of memory byte at DS:[BX + unsigned AL] to AL register.
Algorithm:
AL = DS:[BX + unsigned AL]

Example:
ORG 100h
x DB 11h, 22h, 33h, 44h, 55h
LEA BX, x
MOV AL, 2
XLATB ; AL = 33h
RET
REP chain instruction
Repeat following MOVSB, MOVSW, LODSB, LODSW, STOSB, STOSW instructions
CX times.
Algorithm:
check_cx: if CX <> 0 then

• do following chain instruction
• CX = CX - 1
• go back to check_cx

 36

else
• exit from REP cycle

 REPE/REPZ
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 1 (result
is Equal/Zero), maximum CX times.
Algorithm:
check_cx: if CX <> 0 then

• do following chain instruction
• CX = CX - 1
• if ZF = 1 then:

o go back to check_cx
else

o exit from REPE/REPZ cycle
 else

• exit from REPE/REPZ cycle
REPNE/REPNZ
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 0 (result
is Not Equal/Not Zero), maximum CX times.
Algorithm:
check_cx: if CX <> 0 then

• do following chain instruction
• CX = CX - 1
• if ZF = 0 then:

o go back to check_cx
else

o exit from REPNE/REPNZ cycle
else

• exit from REPNE/REPNZ cycle

3.8. PROCEDURES

The basic mechanism for declaring a procedure is:
procname proc {NEAR or FAR}
 <statements>
procname endp
A simple procedure may consist of nothing more than a sequence of instructions ending
with a ret instruction. For example, the following “procedure” zeros out the 256 bytes
starting at the address in the bx register:
ZeroBytes proc
 xor ax, ax
 mov cx, 128

 37

ZeroLoop: mov [bx], ax
 add bx, 2
 loop ZeroLoop
 ret
ZeroBytes endp

CALL and RETn Operations

The 80x86 supports near and far subroutines. Near calls and returns transfer
control between procedures in the same code segment. Far calls and returns pass control
between different segments. The two calling and return mechanisms push and pop
different return addresses.

The CALL instructions provides for the transfer of control to a called procedure.
The RET returns control back to the calling procedure.

The assembler can tell from the procedure whether RET is near or far and generates the
appropriate object code or it can be explicitly denoted by using RETN or RETF.

Near Call and Return

When a near procedure is called:
1. The IP is pushed onto the stack.
2. The IP is loaded with the address of the called procedure.
3. Upon executing the return the IP is popped off the stack.

CALL
 (SP) ← (SP) – 2
 SS: ((SP) + 1:(SP)) ← (IP)
RET
 (IP) ← SS: ((SP) + 1:(SP))
 (SP) ← (SP) + 2
 [(SP) ← (SP) + n]

Far Call and Return

1. The CS and IP are pushed onto the stack.
2. The IP and CS of the procedure are placed in the IP and CS registers.
3. Upon executing the return the IP and CS are popped off the stack.

CALL
 (SP) ← (SP) – 2
 SS: ((SP) + 1:(SP)) ← (CP)
 (SP) c (SP) – 2
 SS: ((SP) + 1:(SP)) ← (IP)

 38

RET
 (IP) ← SS: ((SP) + 1:(SP))
 (SP) ← (SP) + 2
 (CP) ← SS: ((SP) + 1:(SP))
 (SP) ← (SP) + 2
 [(SP) ← (SP) + n]

3.9. Interrupts
 The 8086/88 microprocessors allow normal program execution to be interrupted
by external signals or by special instructions embedded in the program code. When the
microprocessor is interrupted, it stops executing the current program and calls a
procedure which services the interrupt. At the end of the interrupt service routine
(ISR), the code execution sequence is returned to the original, interrupted program.

Interrupt sources:
Hardware interrupts (external) generated by an external device request service

1. mascable - (INTR).
2. non-maskable interrupt - (NMI)

 Software interrupts:
1. Generated by specific instruction INT or INTO;
2. Generated when special conditions at the microprocessor level appear

– internal interrupts or traps (divide error, single step).
Each interrupt has a number called the interrupt type or interrupt vector.
Interrupt numbers are always in the rate 0 to 255 decimal (00H to FFH). Some

interrupt numbers are fixed by the 8088/8086 hardware, others are chosen by the
designer.

Dedicated (predefined) interrupts:
INT 0 - divide error (generated by CPU after execution of DIV and IDIV

instructions if the quotient is too large);
INT 1 - single step (if TF=1 this interrupt occurs after each instruction and allows

program debugging);
INT 2 - NMI (external non-maskable interrupt. Is the only interrupt which is not

disabled by the CLI instruction. It is designed to handle catastrophic problems such as a
power failure in order to save data before all is lost);

INT 3 - breakpoint (A break point is used to examine the CPU and memory after
the execution of a group of Instructions);

INT 4 – signed number overflow.
When an interrupt occurs, the location to which execution jumps is given in the

interrupt vector table.
Each entry in the table is 4 bytes long - 2 bytes for a new CS value and 2 bytes for

a new IP value.
There are 256 entries in the table, one for each interrupt number.

 39

The table resides at physical memory addresses 00000H through 003FFH (1 KB
of table).

As the address of each memory byte is defined by initial segment address (2
bytes) and offset (2 bytes), the interrupt vector has 4 bytes. The interrupt vector contains
the address of the first instruction of the ISR. CPU calculates the location of the interrupt
vector by multiplying by four the interrupt type.

1 byte 2 byte 3 byte 4 byte
Offset (to be written in IP) Segment (to be written in CS)

 The structure of interrupt vector.

 Interrupt vector table:

INT 0- INT 4 – dedicated
INT 5 - INT 31 are reserved by INTEL (27);
INT 32 - INT 255 depend on users (224).
Interrupts have priority: interrupts with lower interrupt numbers have higher

priority. An interrupt with higher priority can interrupt an interrupt with lower priority.
Interrupt routine
 When an interrupt occurs, the processor

• stores FLAGS register, current IP and CS values into stack,
• disables further interrupts, (IF) <—— О (TF) <—— О
• fetches from the bus one byte representing interrupt number,
• jumps to ISR, address of which is stored in location

 4 * <interrupt type>. (CS) <—— (n * 4 + 2), (IP) <—— (n * 4)
ISR should return with the IRET instruction.
The IRET instruction: Restore CS, IP and FLAGS register from stack.

Interrupts
•Initiated by both software
and hardware
•Can handle anticipated
and unanticipated internal
as well as external events
•ISRs or interrupt handlers
are memory resident
•Use numbers to identify
an interrupt service
•FLAGS register is
saved automatically

Procedures
•Can only be initiated by
software
•Can handle anticipated
events that are coded into
the program
•Typically loaded along
with the program
•Use meaningful names to
indicate their function
•Do not save the FLAGS register

 40

Software interrupts

Software interrupts can be used to call commonly used procedures from many

different programs.
BIOS procedures.
The ROM BIOS (Basic Input Output System) is part of the ROM based control -

system of an IBM PC or compatible that both defines the architecture of the computer
to the software, and provides the fundamental I/O services that are needed for the
operation of the computer.

The BIOS is actually a collection of procedures. Each procedure performs a
specific function such as reading a character from the keyboard, writing characters to the
screen, or reading information from disk.

System I/O procedures are called with the INT instruction.
There are twelve BIOS interrupts at all, falling into five groups. For example with INT
10h you can access the video display services. This interrupt includes 20 subroutines.
Obviously, one of the INT 10h parameters is a data value indicating which one of the
twenty subroutines is required. In this case, the AH Register is loaded with the number
of the subroutine. In addition, the AL, BX, CX and DX registers are used to provide the
parameters for this subroutine.
Example: INT 10h / AH = 0 - set video mode.

input:
AL = desired video mode.

these video modes are supported:
00h - text mode. 40x25. 16 colours. 8 pages.

03h - text mode. 80x25. 16 colours. 8 pages.
13h - graphical mode. 40x25. 256 colors. 320x200 pixels. 1 page.

INT 10h / AH = 2 - set cursor position.

input:
DH = row.

DL = column.
BH = page number (0..7).

 mov dh, 10
 mov dl, 20
 mov bh, 0
 mov ah, 2
 int 10h
INT 10h / AH = 0Ch - change colour for a single pixel.

input:

AL = pixel colour

CX = column.
DX = row.

 41

 mov al, 13h
 mov ah, 0
 int 10h ; set graphics video mode.
 mov al, 1100b
 mov cx, 30
 mov dx, 50
 mov ah, 0ch
 int 10h ; set pixel.

DOS interrupts

There are nine DOS interrupt services.
 Dec Hex Description

 32 20 Program terminate: come to normal ending
 33 21 Function-call umbrella interrupt
 34 22 Terminate address
 35 23 Break address
 36 24 Critical error-handler address
 37 25 Absolute disk read
 38 26 Absolute disk write
 39 27 Terminate-but-stay-resident
 47 2F Print spool control (DOS-3 versions only)

INT 20h "Program Terminate"

This interrupt terminates the current process and returns control back to the parent
process. For example, if you run a com.file program, INT 20 terminates your program
and returns to DOS.
INT 21h

All of the DOS function calls are invoked by INT 21h. Individual functions are
selected in the same way as BIOS functions, placing the function number in the AH-
Register.

INT 21h / AH=5 - output character to printer.
entry: DL = character to print, after execution AL = DL.
 mov ah, 5
 mov dl, 'a'
 int 21h

 42

INT 21h / AH=9 - output of a string at DS:DX. String must be terminated by

'$'.
 mov dx, offset msg
 mov ah, 9
 int 21h
 ret
 msg db "hello world $"

4. Control Unit

4.1. Control Unit basics

 The main function of a computer is to execute programs. The execution of a
program consists of a sequential execution of instructions. Each instruction is executed
during an instruction cycle made up of shorter subcycles (fetch, execute, interrupt). The
performance of each subcycle involves one or more shorter operations, that is, micro-
operations. Micro-operations are functional or atomic operations of a processor – a
transfer between registers, a transfer between registers and external bus, a simple
arithmetic or logic operation (shift, add, negate).

The control unit is the main component that directs the system operations by
sending control signals to the data path. These signals control the flow of data within the
CPU and between the CPU and external units such as memory and I/O.

The control unit performs two basic tasks:
1. Sequencing – the control unit causes the processor to step through a

series of micro-operations in the proper sequence, based on the
program being executed

2. Execution – The control unit causes each micro-operation to be
performed.

A general model of a control Unit:

Flags

Clock

Instruction
register

Control signals
within CPU

Control signals from
system bus

Control signals to
system bus

System Bus

Control
Unit

 43

Inputs:
1. Clock – One or several micro-operations are executed at one clock pulse. It is

called a processor cycle.
2. Instruction register – The opcode of the current instruction is used to determine

which micro-operations to perform.
3. Flags – Are needed to determine the status of the processor and outcome of

previous ALU operations.
4. Control signals from Control Bus – interrupt signals, acknowledgments.

Outputs:
1. Control signals within the CPU – These are two types: those that cause data to be

moved from one register to another and those that activates specific CPU
functions.

2. Control signals to Control Bus – also two types: control signals to memory and
control signals to I/O system.

There are mainly two different types of control units: hardwired and
microprogrammed.

 Hardwired Control Unit

In hardwired control, fixed logic circuits that correspond directly to the Boolean
expressions are used to generate the control signals.

Advantage: Hardwired control is very fast and CU has a small size.
Disadvantage: Hardwired control could be very expensive and complicated for

complex systems. It will require a redesign of the entire systems in the case of any
change (ex. add a new instruction).

 General structure:

Instruction register

DC

Timing
generator

Clock

Control signals

Flags

0 1 n

T0

T1

Tm

C1 C2 Ck

Control unit

 According to the opcode of the instruction, the CU will generate a different
combination of control signals. To simplify the CU logic, there should be a unique logic

 44

input for each opcode. This function is performed by a decoder which takes an encoded
input and produces a single output.

The CU emits different control signals at different time moments (T0, T1…)
within a single instruction cycle. Timing generator is a counter of a clock pulses. The
period of the clock pulses must be long enough to allow the propagation of signals along
data paths and through processor circuitry. At the end of the instruction cycle, the CU
must reinitialize the counter to T0.

In a hardwired implementation a CU produces output control signals as a function
of its input signals.

Let consider a simple example: Assume that the instruction set of a machine has
the three instructions: x, y, and z; and A, B, C, D, E, F, G, and H are signals that should
be generated for the three instructions at the three steps T0 , T1 , and T2.

Step Instruction X Instruction Y Instruction Z
T0 D,B,E F,H,G E,H
T1 C,A.H G D,A,C
T2 G,C B,C -

The Boolean expressions for control signals A, B, and C can be obtained as follows:
A=X*T1+Z*T1=(X+Z)*T1
B=X*T0+Y*T2
C=X*T1+ Z*T1+ X*T2+Y*T2=(X+Z)*T1+ (X+Y)*T2

The logic circuits for these control signals:

Z A

C

B

T1

X

X

X

T0

Y

Y

T2

T2

4.3. Microprogrammed Control Unit

The idea of microprogrammed control units was introduced by M. V. Wilkes in
the early 1950s. Microprogramming was motivated by the desire to reduce the
complexities involved with hardwired control.

An instruction is implemented using a set of micro-operations. Associated with
each micro-operation is a set of control lines that must be activated to carry out the

 45

corresponding microoperation. The idea of microprogrammed control is to store the
control signals associated with the implementation of a certain instruction as a
microprogram in a special memory called a control memory (CM).

Advantage: It is flexible and could adapt easily to changes in the system design.
We can easily add new instructions without changing hardware.

Disadvantage: It is slower than a harwired control unit of comparable technology.
 Microprogramming is the dominant technique in CISC processors, hardwired CU
– in RISC processors.

A microprogram is written in a microprogramming language and consists of a
sequence of microinstructions.

A microinstruction is a vector of bits, where each bit is a control signal,
condition code and the address of the next microinstruction.

Microinstructions can be classified as horizontal or vertical.
Individual bits in horizontal microinstructions correspond to individual control

lines. If the control bit is equal to 1 – the control line is turned on, if the bit is equal to 0
– the control line is leaved of. If the condition code is false – the next instruction in the
sequence is executed. If the condition is true – the address of the next microinstruction
to be executed is indicated in the address field.

Microinstruction
address

Condition code
unconditional

zero
overflow

System Bus
control signals

Internal CPU
control
signals

Horizontal microinstructions are long and allow maximum parallelism since each
bit controls a single control line.

In vertical microinstructions, control lines are coded into specific fields within a
microinstruction. Decoders are needed to map a field of k bits to 2k possible
combinations of control lines. Because of the encoding, vertical microinstructions are
much shorter than horizontal ones. Control lines encoded in the same field cannot be
activated simultaneously. Therefore, vertical microinstructions allow only limited
parallelism.

Field A
3 bits

Field B
2 bits

DC 1:8 DC 1:4

A0 A1 A7 B0 B1 B3

 46

 The control memory contains a program that describes the behavior of the control
unit. So, the control unit is implemented by executing that program.

 The CU functions as follows (during one clock pulse):
1. To execute an instruction, the Sequencing Logic Unit generates a READ

command to the Control Memory.
2. The word whose address is specified in the Control Address Register is writes into

the Control Data Register.
3. The content of the Control Data Register generates control signals and next

address information for the Sequencing Logic Unit.
4. The Sequencing Logic Unit loads a new address into the Control Address

Register based on the next address information from the Control Data Register
and the ALU flags.

Microprogrammed CU structure:

Instruction Rg

DC

Control address RgSequencing
Logic

Control Data Rg

Control signals
within CPU

Control signals
to System Bus

Next address control

Read

Flags

Clock

DC

CU

Control
memory

5. Memory System

 5.1. Memory hierarchy

Computer memory is organised into a hierarchy. In such a hierarchy, larger and
slower memories are used to supplement smaller and faster ones. At the highest level
(closest to the processor) are the processor registers. Next comes one or more levels of
cache, denoted L1, L2, etc. Then comes main memory. All of these are considered

 47

internal to the computer system. The hierarchy continues with auxiliary (external)
memory – fixed hard disk and one or more levels below that consisting of removable
media such as optical disks and tape.

CPU Registers

Cache

Main Memory

Auxiliary Memory
(fixed hard disk,

removable disks and tapes)

Speed
Cost

Latency
Bandwidth

Capacity (megabytes)

The memory hierarchy can be characterized by a number of parameters:
1. Access type (sequential, direct, random and associative)
- Sequential access. It is used in tape units. Memory is organized into units of

data, called records. Access must be done in a specific linear sequence. Example: if
access to location 100 takes 500 ns, and if a consecutive access to location 101 takes 505
ns, then it is expected that an access to location 300 may take 1500 ns. This is because
the memory has to cycle through locations 100 to 300, with each location requiring 5 ns.

 - Direct access. It is used in disk units. Individual blocks have a unique address
based on physical location. Access is done by direct access of a block and sequential
searching to reach the final location.

- Random access. It is used in main memory and some cache systems. Each
addressable location has a unique address. The time to access a given location is
constant.

- Associative access. It is used in some cache memories. It is a random access
type of memory in which a word is stored and retrieved based on a portion of its content
rather than its address. The access time is also constant.

2. Capacity. Is typically expressed in terms of bytes or words (1KB, 1MB, 1GB).
3. Access time (latency). The time it takes to perform a write or read operation, it

represents an interval between the request for information and the access to the
first bit of that information.

4. Cycle time It consists of the access time plus any additional time required
before a second access can commence.

 48

Access time
Cycle time

Search
time

Transfer
time

Wait time
Time

5. Bandwidth (Transfer rate). This is the rate at which data can be transferred

into or out a memory unit. It is equal to 1/cycle time (words per second) or
w/cycle time.

6. Cost (is usually specified in money per megabytes).

Memory hierarchy parameters

 A variety of physical types of memory have been employed. The most common
today are semiconductor memory, magnetic, used for disk and tape, and optical and
magneto-optical.
 According to physical characteristics memory can be:

1. Volatile – information is lost when electrical power is switched off (RAM).
2. Non-volatile – information once recorded remains without deterioration until it

is changed (ROM).

The effectiveness of a memory hierarchy during a program execution depends on

the principle called locality of reference, that is, within a given period of time, programs
tend to reference a relatively confined area of memory repeatedly. So, according to this
principle, the most frequently used information is temporarily moved into the faster
memory.

There exist two forms of locality: spatial and temporal locality.
Spatial locality refers to the phenomenon that when a given address has been

referenced, it is most likely that addresses near it will be referenced within a short period
of time, for example, consecutive instructions in a straight-line program.

 49

Temporal locality, on the other hand, refers to the phenomenon that once a
particular memory item has been referenced, it is most likely that it will be referenced
next, for example, an instruction in a program loop.

The sequence of events that takes place when the processor makes a request for an
item is as follows. First, the item is sought in the first memory level of the memory
hierarchy. The probability of finding the requested item in the first level is called the hit
ratio. The probability of not finding (missing) the requested item in the first level of the
memory hierarchy is called the miss ratio. When the requested item causes a “miss,” it
is sought in the next subsequent memory level.

5.2. Semiconductor memory types

The main memory of a computer system should be fast enough to not degrade the
performance of the system. To achieve this, the semiconductor type memories are used
as main memory.

• read-only memory -ROM
• read-write memory or random access memory - RAM

Among them ROM is a non-volatile memory type. I.e. they retain their contents
when the power goes off. On the other hand, RAM type devices loss their contents when
the power goes off, because of the technology used.

ROM memory
In ROM, the data are permanently stored. They are available in many forms.
• ROM. Its content cannot be erasable.
• PROM (Programmable read only memory. Once programmed, they cannot be

erased.
• EPROM (erasable programmable ROM). Erasable by ultraviolet lights.
• EEPROM (byte-level electrically erasable programmable ROM).
• Flash memory (block-level electrically erasable programmable ROM).

RAM memory
• static random access memory (SRAM)
• dynamic random access memory (DRAM)

In a SRAM binary values are stored using traditional flip-flops (6 transistors
configuration).

A DRAM is made with cells that store data as charge on capacitors. Dynamic
memory depends on storing logic values using a capacitor together with one transistor
that acts as a switch. The use of dynamic memory leads to saving in chip area. The
presence or absence of charge on a capacitor is interpreted as a binary 1 or 0. Because
capacitors have a natural tendency to discharge, DRAMs require periodic charge
refreshing by a special circuit.

 50

SRAM and DRAM are both volatile: power must be continuously supplied to the
memory. DRAM cell is smaller than SRAM cell. Thus, a DRAM is denser and less
expensive, but it requires the supporting refresh circuitry. Thus, DRAMs are used in
large memory requirements. SRAMs are generally faster than DRAMs. They are used
and in cache memories.

5.3. Memory chip organization
A typical pin configuration of a memory chip contains n address input lines to

select 2n rows, k output (data) lines, and control lines.
Each memory device has at least one chip select (CS) or chip enable (CE) or

select (S) pin that enables the memory device. This enables read and/or write
operations. If more than one is present, then all must be 0 in order to perform a read or
write.

Each memory device has at least one control pin. For ROMs, an output enable
(OE) or gate (G) is present. The OE pin enables and disables a set of 3-state buffers.
For RAMs, a read-write (R / W) or write enable (WE) and read enable (OE) are
present. For dual control pin devices, it must be hold true that both are not 0 at the same
time.

A conceptual internal organization of a SRAM chip:

A0
A1

An-1

W0

W1

W2n-1

Data lines

DC

OE

CS

WE

Control
circuit

If one decoder is used, the organization is called one-dimensional.

 51

Cells belonging to a given row can be assumed to form the bits of a given memory
word. Address lines An-1, An-2, …,A1, A0 are used as inputs to the address decoder in
order to generate the word select lines W2

n
-1, W2

n
-2, …, W1, W0. A given word select line

is common to all memory cells in the same row. At any given time, the address decoder
activates only one word select line. A word select line is used to enable all cells in a row
for read or write. Data (bit) lines are used to input or output the contents of cells.

 Example: A 1Kx4 memory chip indicates that the chip has 1K rows of cells and in
each row there are 4 cells. The total number of cells is 4K. To address 1K=210 rows,
log22

10=10 addresses are needed. However, this may not lead to the best utilization of
the chip area.

Another possible organization of this memory cell array is as a 64x64, that is, to

organize the array in the form of 64 rows, each consisting of 64 cells. In this case, six
address lines (forming what is called the row address) will be needed in order to select
one of the 64 rows. The remaining four address lines (called the column address) will be
used to select the appropriate 4 bits among the available 64 bits constituting a row. For
this four 16-to-1 MUX are used.

 52

Memory subsystems

An important factor in the design of the main memory subsystem is the required
number of memory chips. The available per chip memory capacity can be a limiting
factor in designing memory subsystems.

Consider, for example, the design of a 16 KB main memory subsystem using
4Kx4 memory chips. The number of required chips is:

16 8
8

4 4

K

K
× =

It should be noted that the number of address lines needed to a memory subsystem
depends on the number of data lines.

1) If the width of the data bus is 8, the number of address lines required for the 16
KB system is 14 (16KB=24*210=214).

2) If the width of the data bus is 16, the number of address lines required for the
16 KB=8 KW system is 13 (8 KW=23*210=213).

In the first case, the memory subsystem can be arranged in 4 rows, each having
two chips. The least significant 12 address lines A0-A11 are used to address each
memory chip, which has 12 address lines. The high-order two address lines A12-A13
are used as inputs to a 2-4 decoder in order to generate 4 enable lines, each is connected
to the CE line of the two chips constituting a row. Also, to each memory chip a control
signal /R W (for memory read and memory write operations) is connected.

DC

A0-A11

D3-D0D4-D7

A12
A13

01

23

45

67

/R W

In the second case, the memory subsystem can be arranged in 2 rows, each having

four chips. The least significant 12 address lines A0-A11 are used to address each
memory chip. The high-order address line A12 is used as input to a 1-2 decoder in order
to generate 2 enable lines, each is connected to the CE line of the four chips constituting
a row.

 53

DC

D3-D0D4-D7

A12 023

5

/R W

A0-A11

1

7 6 4

D15-D12 D11-D18

Cache memory

Cache memory is a small high-speed memory, situated between the processor and
the main memory in which the information expected to be used more frequently by the
CPU is kept (the term cache means a safe place for hiding or storing things).

CPU Cache Main
Memory

Word
transfer

Block
transfer

The structure of a cache-memory system
So, at any given time some active portion of the main memory is duplicated in the

cache. Therefore, when the processor makes a request for a memory reference, the
request is first sought in the cache. If the request corresponds to an element that is
currently residing in the cache, we call that a cache hit. If the request corresponds to an
element that is not currently in the cache, we call that a cache miss. After a cache miss,
a block of elements is brought from the main memory to cache. Because of the
phenomenon of locality of reference, we can expect that the next requested element will
be residing in the neighboring locality of the current requested element.

A request for accessing a memory element is made by the processor through
issuing the logic address of the requested element. It may correspond to that of an
element that exists currently in the cache (cache hit); otherwise, it may correspond to an
element that is currently residing in the main memory. Therefore, address translation has
to be made in order to determine where the requested element is. This is one of the
functions performed by the memory management unit (MMU).

 54

The system address represents the address issued by the processor for the

requested element. This address is used by an address translation function inside the
MMU. If after translation the address is found in the cache, then the element will be
made available to the processor. If the element is not currently in the cache, then it will
be brought (as part of a block) from the main memory and placed in the cache

There are three main different organization techniques used for cache memory.
1. Direct mapping
2. Associative Mapping
3. Set-Associative Mapping.
These techniques differ in two main aspects:

- The criterion used to place, in the cache, an incoming block from the main memory.
- The criterion used to replace a cache block by an incoming block (on cache full).

The main memory consists of up to 2n addressable words, with each word having
a unique n-bit address. For mapping purposes, this memory is considered to consist of a
number of fixed-length blocks of B words each. That is, there are M=2n/B blocks. Cache
consists of C lines of B words each and the number of lines is considerably less than the
number of main memory blocks (C<<M). Because there are more blocks than lines, an
individual line cannot be uniquely dedicated to a particular block. Thus, each line
includes a tag (eticheta) that identifies which block is currently being stored. The tag is
usually a portion of the main memory address.

Direct mapping

 55

According to the direct-mapping technique, each block of main memory is
mapped into only one possible cache block.

Consider a main memory with M blocks with B words in each. If cache contains
C lines, then memory is organized as a two-dimensional array with C lines and L
columns. C*L=M. So, L memory blocks from one line can be mapped in one cache
block.

Each main memory address is divided into three fields:

The word field identifies a unique word within a block. It contains b=log2 B bits.
The cache block field specifies one cache block (line). It contains c= log2 C bits.
The tag field specifies one block in the main memory line. It contains l = log2 L bits,
where L=M/C
The total number of bits in the main memory address n=log2 (B*M).

Consider, for example, the case of a main memory consisting of M=4K=212
blocks, a cache memory consisting of C=128=27 blocks, and a block size of B=16=24
words (bytes). The main memory size is 212*24=216=64KB.

The division of the main memory and the cache according to the direct-mapped
cache technique: Main memory array: 128 x 32.

For example, main memory blocks 0, 128, 256, 384, . . . , 3968 map to cache line 0.

Word field: b= log2 16 = 4 bits
Cache Block field c= log2 128 = 7 bits
Tag field l= log2 L= log2 (M/C) = log2 (2

12/27) = 5 bits
The total number of bits in the main memory address
n = log2 (M*B) = log2 (2

12 *24) =16 bits.
The protocol used by the MMU to satisfy a request made by the processor for

accessing a given element.
1. Use the Block field to determine the cache block that should contain the element
requested by the processor.

 56

2. Check the corresponding Tag memory to see whether there is a match between its
content and that of the Tag field. A match means a cache hit.
3. Among the elements contained in the cache block, the targeted element can be
selected using the Word field.
4. If in step 2, no match is found, then this indicates a cache miss. Therefore, the
required block has to be brought from the main memory, deposited in the cache, and the
targeted element is made available to the processor. The cache Tag memory and the
cache block memory have to be updated accordingly.

The direct mapping technique is simple and inexpensive to implement. Its main
disadvantage is that there is a fixed cache location for any given block. Consider, for
example, the sequence of requests made by the processor for elements held in the main
memory blocks 1, 9, 17, 25. Consider also that the cache size is 8 blocks. It is clear that
all the above blocks map to cache block number 1. Therefore, these blocks will compete
for the same cache block despite the fact that the remaining 7 cache blocks are not used.

Tag

Tag Data

Cache Main memoryMemory address

Cache block Word

Compare

HitMiss

Word

Block

Associative Mapping
According to this technique, an incoming main memory block can be placed in

any available cache block.
Therefore, the address issued by the processor need only have two fields. These

are the Tag and Word fields.

The first uniquely identifies the block while residing in the cache.

 57

The second field identifies the element within the block that is requested by the
processor.

To determine whether a block is in the cache, the cache control logic must
examine every block’s tag in parallel. Note that no field in the address corresponds to
cache block number, so that the number of block in the cache is not determined by the
address format.

The length, in bits, of each of the fields:
1. Word field b= log2 B, where B is the size of the block in words.
2. Tag field m= log2 M, where M is the size of the main memory in blocks.
3. The number of bits in the main memory address n= log2 (B * M)

Let’s compute these parameters for a memory system having the following
specification: size of the main memory is 4K blocks, size of the cache is 128 blocks, and
the block size is 16 words.
Word field b= log2 B = log2 16= log2 2

4 = 4 bits
Tag field m = log2 M = log2 4K= log2 2

12 = 12 bits
The number of bits in the main memory address n=log2(B * M)=log2(2

4 * 212) = 16 bits.

The protocol used by the MMU to satisfy a request made by the processor for
accessing a given element.
1. Use the Tag field to search in the Tag memory for a match with any of the tags stored.
2. A match in the tag memory indicates a cache hit.
3. Among the elements contained in the cache block, the targeted element can be
selected using the Word field.
4. If in step 2, no match is found, then this indicates a cache miss. Therefore, the
required block has to be brought from the main memory, deposited in the first available
cache block, and the targeted element (word) is made available to the processor. The
cache Tag memory and the cache block memory have to be updated accordingly.

 58

Tag

Tag Data

Cache Main memoryMemory address

Word

Compare

Hit
Miss

Word

Block

The main advantage of the associative-mapping technique is the efficient use of
the cache. Any unoccupied cache block can potentially be used to receive those
incoming main memory blocks.

The main disadvantage of the technique, however, is the hardware overhead
required to perform the associative (parallel) search conducted in order to find a match
between the tag field and the tag memory.

Set-Associative Mapping
A set-associative mapping is a compromise between direct and associative

mapping. According to set-associative mapping technique, the cache is divided into a
number of sets. An incoming block maps to any block in the assigned cache set.
Therefore, the address issued by the processor is divided into three distinct fields. These
are the Tag, Set, and Word fields.

The Set field is used to uniquely identify the specific cache set that ideally should
hold the targeted block. The Tag field uniquely identifies the targeted block within the
determined set. The Word field identifies the element (word) within the block that is
requested by the processor.

The length, in bits, of each of the fields is given by:

1. Word field b= log2 B, where B is the size of the block in words.

 59

2. Set field s= log2 S, where S is the number of sets in the cache.
3. Tag field m= log2 (M/S), where M is the size of the main memory in blocks.
S = C/Bs, where C is the number of cache blocks and Bs is the number of blocks per set.
4. The number of bits in the main memory address n = log2 (B * M).

Example. Compute the above three parameters (Word, Set, and Tag) for a memory
system having the following specification: size of the main memory M is 4K blocks,
size of the cache C is 128 blocks, and the block size B is 16 words. One cache set Bs has
four blocks.
Word field b= log2 B = log2 16= log2 2

4 = 4 bits
Set field s=log2 (128/4) = log2 32 = 5
Tag field m = log2 (M/S) = log2 2

12/25= log2 2
7= 7 bits

The number of bits in the main memory address n=log2(B * M)=log2(2
4 * 212) = 16 bits.

The protocol used by the MMU to satisfy a request made by the processor for

accessing a given element.
1. Use the Set field (5 bits) to determine (directly) the specified set (1 of the 32 sets).
2. Use the Tag field to find a match with any of the (four) blocks in the determined set.
A match in the tag memory indicates that the specified set determined in step 1 is
currently holding the targeted block, that is, a cache hit.
3. Among the 16 words (elements) contained in hit cache block, the requested word is
selected using a selector with the help of the Word field.
4. If in step 2, no match is found, then this indicates a cache miss. Therefore, the
required block has to be brought from the main memory.

Replacement Techniques and Write Policies

 When a new block is brought into the cache, one of the existing blocks must be
replaced. For direct mapping, there is only one possible line for any particular block and
no choice is possible. For the associative and set-associative techniques, a replacement
algorithm is needed.

A number of replacement techniques can be used:
1. A randomly selected block (random selection). As the name indicates,

random selection of a cache block for replacement is done based on the output of the
random number generator at the time of replacement. This technique is simple and does
not require much additional overhead. However, its main shortcoming is that it does not
take locality into consideration.

2. The block that has been in the cache the longest (first-in, first- out, FIFO).
This technique requires keeping track of the lifetime of a cache block. Therefore, it is
not as simple as the random selection technique. Intuitively, the FIFO technique is
reasonable to use for straight-line programs where locality of reference is not of concern.

 60

3. The block that has been used the least while residing in the cache (least
recently used, LRU).The LRU technique is the most effective. This is because the
history of block usage (as the criterion for replacement) is taken into consideration. The
LRU algorithm requires the use of a cache controller circuit that keeps track of
references to all blocks while residing in the cache. This can be achieved using counters.
In this case each cache block is assigned a counter. Upon a cache hit, the counter of the
corresponding block is set to 0, all other counters having a smaller value than the
original value in the counter of the hit block are incremented by 1, and all counters
having a larger value are kept unchanged. Upon a cache miss, the block whose counter
is showing the maximum value is chosen for replacement, the counter is set to 0, and all
other counters are incremented by 1.
Cache Write Policies

There are essentially two possible write policies upon a cache hit. These are the
write-through and the write-back.

In the write-through policy, every write operation to the cache is repeated to the
main memory at the same time.

In the write-back policy, all writes are made to the cache.
A write to the main memory is postponed (amanata) until a replacement is needed.

Every cache block is assigned a bit, called the dirty bit, to indicate that at least one write
operation has been made to the block while residing in the cache. At replacement time,
the dirty bit is checked; if it is set, then the block is written back to the main memory,
otherwise, it is simply overwritten by the incoming block.

The write-through policy maintains coherence between the cache blocks and their
counterparts in the main memory at the expense of the extra time needed to write to the
main memory. This leads to an increase in the average access time. On the other hand,
the write-back policy eliminates the increase in the average access time. However,
coherence is only guaranteed at the time of replacement.

Virtual memory

A virtual memory system attempts to optimize the use of the main memory (the
higher speed portion) with the hard disk (the lower speed portion). In effect, virtual
memory is a technique for using the secondary storage to extend the apparent limited
size of the physical memory. It is usually the case that the available physical memory
space will not be enough to host all the parts of a given active program.

The principles employed in the virtual memory design are the same as those
employed in the cache memory. The most relevant principle is that of keeping active
segments in the high-speed main memory and moving inactive segments back to the
hard disk.

The address issued by the processor in order to access a given word does not
correspond to the physical memory space. Therefore, such address is called a virtual

 61

(logical) address. The memory management unit (MMU) is responsible for the
translation of virtual addresses to their corresponding physical addresses.

Three address translation techniques can be identified. These are:
- direct-mapping;
 - associative- mapping;
- set-associative-mapping.
The logical addresses can be organized in three modes:
- fixed length pages (from 2K to 16K bytes);
- variable length segments (<64KB);
- paged segmentation (one segment contains a few pages).
In all these techniques, the translation from logical address to physical is done

using a translation table, stored in the main memory.

Address translation using pages

 Direct-mapping

In this case, the virtual address issued by the processor is divided into two fields:
the virtual page number and the offset fields. If the number of bits in the virtual page
number field is N, then the number of entries in the page table will be 2N.

The virtual page number field is used to directly address an entry in the page
table. If the corresponding page is valid (as indicated by the valid bit), then the contents
of the specified page table entry will correspond to the physical page address in the main
memory. The latter is then extracted and concatenated with the offset field in order to
form the physical address of the word requested by the processor. If, on the other hand,
the specified entry in the page table does not contain a valid physical page number, then
this represents a page fault. In this case, the MMU will have to bring the corresponding
page from the hard disk, load it into the main memory, and indicate the validity of the
page.

Example. Suppose that the virtual address contains 16 bits. One page has 212
words. Four most significant bits will specify one of 16 pages and last 12 bits – the word
address in the page.

 62

The main advantage of the direct-mapping technique is its simplicity measured in

terms of the direct addressing of the page table entries. Its main disadvantage is the
expected large size of the page table and a lot of empty entries in it.

Associative Mapping

The virtual address issued by the processor is divided into two fields: the virtual
page number and the offset fields. However, the page table could be far shorter.

Every entry in the page table is divided into two parts: the virtual page number
and the physical page number. A match is searched (associatively) between the virtual
page number field of the address and the virtual page numbers stored in the page table.
If a match is found, the corresponding physical page number stored in the page table is
extracted and is concatenated with the offset field in order to generate the physical
address of the word requested by the processor.

If a match could not be found, then this represents a page fault. In this case, the
MMU will have to bring the corresponding page from the hard disk, load it into the main
memory, and indicate the validity of the page.

 63

The main advantage of the associative-mapping technique is the expected shorter

page table (compared to the direct-mapping technique) required for the translation
process. Its main disadvantage is the associative search that requires the use of an added
hardware overhead.

A possible compromise between the complexity of the associative mapping and
the simplicity of the direct mapping is the set-associative mapping technique.

Set-Associative Mapping

In this case, the virtual address issued by the processor is divided into three fields:
the tag, the index, and the offset. The page table used in set-associative mapping is
divided into sets, each consisting of a number of entries. Each entry in the page table
consists of a tag and the corresponding physical page address.

Similar to direct mapping, the index field is used to directly determine the set in
which a search should be conducted. If the number of bits in the index field is S, then the
number of sets in the page table should be 2S. Once the set is determined, then a search
(similar to associative mapping) is conducted to match the tag field with all entries in
that specific set. If a match is found, then the corresponding physical page address is
extracted and concatenated with the offset field in order to generate the physical address
of the word requested by the processor.

Translation Look-Aside Buffer (TLB)

In most modern computer systems a copy of a small portion of the page table is
kept on the processor chip. This portion consists of the page table entries that correspond
to the most recently accessed pages. This small portion is kept in the translation look-
aside buffer (TLB) cache. A search in the TLB precedes that in the page table. A hit in
the TLB will result in the generation of the physical address of the word requested by

 64

the processor, thus saving the extra main memory access required to access the page
table. It should be noted that a miss on the TLB is not equivalent to a page fault.

Segment Address Translation

In order to support segmentation, the address issued by the processor should
consist of a segment number (base) and a displacement (or an offset) within the
segment.

Address translation is performed directly via a segment table. The starting address
of the targeted segment is obtained by adding the segment number to the contents of the
segment table pointer. One important content of the segment table is the physical
segment base address. Adding the latter to the offset yields the required physical
address.

Paged Segmentation

Both segmentation and paging are combined in most systems. Each segment is
divided into a number of equal sized pages. The basic unit of transfer of data between
the main memory and the disk is the page, that is, at any given time, the main memory
may consist of pages from various segments. In this case, the virtual address is divided
into a segment number, a page number, and displacement within the page. Address
translation is the same as explained above except that the physical segment base address
obtained from the segment table is now added to the virtual page number in order to
obtain the appropriate entry in the page table. The output of the page table is the page
physical address, which when concatenated with the word field of the virtual address
results in the physical address.

 65

 66

Input–Output system
Basic concepts

Input–output (I/O) system is the interface to the outside world – external
(peripheral) devices. Peripheral devices cannot be connected directly to the system bus,
only through I/O interface circuits – I/O module. The reasons are:

1. There are a wide variety of peripherals with various methods of operation;
2. The data transfer rate is very different (the data transfer rate of a keyboard is

about 10 characters (bytes)/second, a scanner can send data at a rate of about 200,000
characters/second, a laser printer can output data at a rate of about 100,000
characters/second, a graphic display can output data at a rate of about 30,000,000
characters/second.);

3. Peripherals often use different data formats and word lengths than the computer
to which they are attached.

The functions of an I/O module:
1. Control and timing to coordinate the flow of traffic between internal resources

and external devices.
The control of the transfer of data from the peripheral to the processor:
- The processor check the status of the device
- The I/O module returns the status of the device
- If the device is ready to transmit, the processor requests transfer of data by

means of a command to the I/O module
- The I/O module obtains a unit of data (8 or 16 bits) from the device
- The data are transferred from the I/O module to the processor.
2. Communication between the processor and the device. It involves commands

decoding, status information (common status signals are BUSY and READY), address
recognition and data exchange.

3. Data buffering. The transfer rate of the processor and peripheral is different. So
data are first stored in special input and output registers (ports).

Data Rg

Status/Control Rg

I/O
Logic

External
Device

Interface
Logic

Data
Status

Control

Data
lines

Address
lines

Control
lines

External
Device

Interface
Logic

Data

Status

Control

Interface to
system bus

Interface to
external device

Block diagram of an I/O module

 67

In a typical computer system, there is a number of input or output registers (ports),
each belonging to a specific input or output device.

There are two arrangements to address input and output registers.
1. Shared I/O. I/O devices are assigned particular addresses, isolated from the

address space assigned to the memory.
The main advantage of the shared I/O arrangement is the separation between the

memory address space and that of the I/O devices. Its main disadvantage is the need to
have special input and output instructions in the processor instruction set. The shared I/O
arrangement is mostly adopted by Intel.

2. Memory-mapped I/O. Input and output registers are addressed as memory
locations.

The main advantage of the memory-mapped I/O is the use of the read and write
instructions of the processor to perform the input and output operations, respectively. It
eliminates the need for introducing special I/O instructions. The main disadvantage - is
the need to reserve a certain part of the memory address space for addressing I/O
devices, that is, a reduction in the available memory address space. The memory-
mapped I/O has been mostly adopted by Motorola.

I/O techniques of data transfer

 There are three principal I/O techniques of data transfer:

- programmed I/O, in which I/O data transfer occurs under the control of the CPU
program;

- interrupt driven I/O, in which I/O data transfer is controlled by CPU after the
external interrupt request that initiates the transfer;

- direct memory access (DMA), in which a specialized I/O controller takes over the
control of an I/O operation to move a large block of data.

Programmed I/O

 I/O data transfer occurs under the control of the CPU program. The program must
check the device status, send a read or write command and transfer the data. The
processor must wait until the I/O operation is complete. If the processor is faster than the
I/O module, this is wasteful of the processor time.
 The process of checking the status of I/O devices in order to determine their
readiness for receiving and/or sending characters, is called I/O polling.

To execute an I/O instruction, the processor issues an address, specifying the
particular I/O module and external device, and an I/O command.

There are four types of commands:
. Control: Used to activate a peripheral and tell it what to do.

 68

. Test: Used to test various status conditions associated with an I/O module and its
peripherals (if it is powered on, if the I/O operation is completed, if any errors occurred).

. Read: Causes the I/O module to obtain the word of data from the peripheral and
place it in an internal buffer – data register and then to the data bus;

. Write: Causes the I/O module to take a word of data from the data bus and
transmit it to the peripheral.

 A flowchart of reading in a block of data:
Issue read

command to I/O
module

Read status of
I/O module

CPU -> I/O

I/O -> CPU

Check status
Not ready

 Ready

Read word from
I/O module

Write word into
memory

Done

Next instruction

Yes

No

I/O -> CPU

Error

CPU -> memory

 For each word that is read in, the processor must remain in status checking cycle
until it determines that the word is available in the I/O module’s data register. This
flowchart highlights the main disadvantage of this technique: it is a time-consuming
process.

Interrupt-driven I/O

 With interrupt driven I/O, the processor issues an I/O command, continues to
execute other instructions, and is interrupted by the I/O module when the latter is ready
to exchange data with the processor.

I/O module actions.

 69

For input, the I/O module receives a READ command from the processor. Then it
proceeds to read data in from an associated peripheral. Once the data are in the module’s
data register, the module signals an interrupt to the processor over a control line. The
module then waits until its data are requested by the processor. When the request is
made, the module places data on the data bus.

Processor’s actions.
The processor issues a READ command and then goes off and executes other

instructions. At the end of each instruction cycle, the processor checks for interrupts.
When the interrupt occurs, the processor stores FLAGS register, current IP and CS
values into stack, disables further interrupts, fetches from the bus one byte representing
interrupt number, and jumps to Interrupt Service Routine (ISR). In this case, it reads the
word of data from the I/O module and stores it in memory. It then restores the content of
the registers from stack and resumes execution.

A flowchart of reading in a block of data:

Issue read
command to I/O

module

Read status of
I/O module

CPU -> I/O

I/O -> CPU

Check status

 Ready

Read word from
I/O module

Write word into
memory

Done

Next instruction

Yes

No

I/O -> CPU

Error

CPU -> memory

Do something else

Interrupt

 Interrupt-driven I/O is more efficient than programmed I/O because it eliminates
needless waiting. However, it still consumes a lot of processor time, because every word

 70

of data that goes from memory to I/O module or vice-versa must pass through the
processor.

Bus arbitration in Interrupt-driven I/O

Computers are provided with interrupt hardware capability in the form of

specialized interrupt lines to the processor. These lines are used to send interrupt signals
to the processor.

In the case of I/O, there exists more than one I/O device. The processor should be
provided with a mechanism that enables it to handle simultaneous interrupt requests and
to recognize the interrupting device.

Two basic schemes can be implemented to achieve this task.
1. daisy chain bus arbitration (DCBA);
2. independent source bus arbitration (ISBA).

According to the DCBA, I/O devices present their interrupt requests to the
interrupt request line INR (similar to the polling arrangement). Upon recognizing the
arrival of an interrupt request, the processor, through a daisy chained grant line (GL),
sends its grant to the requesting device to start communication with the processor. The
GL goes through all devices. If Device #1 has put a request, then it will hold the grant
signal and start communication with the processor. If, on the other hand, Device #1 has
no interrupt request, it will pass the grant signal to device #2, which will repeat the same
procedure, and so on.

In the case of multiple requests, the DCBA arrangement gives highest priority to
the device physically nearer to the processor.

According to the ISBA, each I/O device has its own interrupt request line, through

which it can send its interrupt request, independent of the other devices.
Similarly, each I/O device has its own grant line, through which it receives the

grant signal for its request such that it can start communicating with the processor.

 71

I/O device priority in the ISBA does not depend on the device location. A priority
arbitration circuitry is needed in order to deal with simultaneous interrupt requests.

Direct memory access (DMA)

Programmed I/O and interrupt-driven I/O suffer from two drawbacks:
1. The I/O transfer rate is limited by the speed with which the processor can test

and service a device.
2. The processor must execute a number of instructions for each I/O transfer.
When large volumes of data are to be moved, a more efficient technique is

required: direct memory access (DMA).
DMA involves an additional module on the system bus, the DMA controller. It

takes over the control of the system from the processor.

Data register

Data count

Address register

Control logic

Data lines

DMA request
DMA acknowledge

Interrupt
Read

Write

 72

When the processor wishes to read or write a block of data, it issues a command
to the DMA controller, by sending the following information:

. If read or write is requested (read or write control lines).

. The address of the I/O device (data lines).

. The starting location in memory to read or write (it is stored in address register)

. The number of words to be read or written (send on data lines and stored in the
data count register).

When the transfer is complete, The DMA controller sends an interrupt signal to
the processor. Thus, the processor is involved only at the beginning and end of the
transfer.

Issue read block
command to I/O

module

Read status of
DMA controller

CPU -> DMA

DMA -> CPU

Do something
else

Interrupt
Direct memory access data transfer can be performed in burst mode or single

cycle mode.
In burst mode, the DMA controller keeps control of the bus until all the data has

been transferred to (from) memory from (to) the peripheral device. This mode of transfer
is needed for fast devices where data transfer cannot be stopped until the entire transfer
is done.

In single-cycle mode (cycle stealing), the DMA controller relinquishes the bus
after each transfer of one data word. This minimizes the amount of time that the DMA
controller keeps the CPU from controlling the bus, but it requires that the bus
request/acknowledge sequence be performed for every single transfer. This overhead
can result in a degradation of the performance.

The following steps summarize the DMA operations:
1. DMA controller initiates data transfer.
2. Data is moved (increasing the address in memory, and reducing the count of

words to be moved).
3. When word count reaches zero, the DMA informs the CPU of the termination

by means of an interrupt.
4. The CPU regains access to the memory bus.
A DMA controller may have multiple channels. Each channel has associated with

it an address register and a count register. To initiate a data transfer the device driver
sets up the DMA channel’s address and count registers together with the direction of the

 73

data transfer, read or write. While the transfer is taking place, the CPU is free to do other
things. When the transfer is complete, the CPU is interrupted.

Direct memory access channels cannot be shared between device drivers. A
device driver must be able to determine which DMA channel to use. Some devices have
a fixed DMA channel, while others are more flexible, where the device driver can
simply pick a free DMA channel to use.

Bus Arbitration in DMA mode

Bus arbitration is needed to resolve conflicts when two or more devices want to

become the bus master at the same time. In short, arbitration is the process of selecting
the next bus master from among multiple candidates.

Centralized Arbitration
In centralized arbitration schemes, a single arbiter is used to select the next

master. A simple form of centralized arbitration uses a bus request line, a bus grant line,
and a bus busy line. Each of these lines is shared by potential masters, which are daisy-
chained in a cascade.

Each of the potential masters can submit a bus request at any time.
Instead of using shared request and grant lines, multiple bus request and bus grant

lines can be used.

 74

Decentralized Arbitration
In decentralized arbitration schemes, priority-based arbitration is usually used in a

distributed fashion. Each potential master has a unique arbitration number, which is used
in resolving conflicts when multiple requests are submitted. For example, a conflict can
always be resolved in favor of the device with the highest arbitration number. The
question now is how to determine which device has the highest arbitration number? One
method is that a requesting device would make its unique arbitration number available to
all other devices. Each device compares that number with its own arbitration number.
The device with the smaller number is always dismissed. Eventually, the requester with
the highest arbitration number will survive and be granted bus access.

INPUT–OUTPUT INTERFACES

An interface is a data path between two separate devices in a computer system.
Interface to buses can be classified based on the number of bits that are

transmitted at a given time to serial versus parallel ports. In a serial port, only 1 bit of
data is transferred at a time. Mice and modems are usually connected to serial ports. A
parallel port allows more than 1 bit of data to be processed at once. Printers are the most
common peripheral devices connected to parallel ports.

A summary of the variety of buses and interfaces used in personal computers:

 75

Bus/Interface Description
PS/2 A type of port (or interface) that can be used to connect mice and

keyboards to the computer. The PS/2 port is sometimes called the
mouse port.

Industry standard
architecture (ISA)

ISA was originally an 8-bit bus and later expanded to a 16-bit bus
in 1984. In 1993, Intel and Microsoft introduced a plug and play
ISA bus that allowed the computer to automatically detect and set
up computer ISA peripherals such as a modem or sound card.

Extended industry
standard
architecture
(EISA)

EISA is an enhanced form of ISA, which allows for 32-bit data
transfers, while maintaining support for 8- and 16-bit expansion
boards. However, its bus speed, like ISA, is only 8 MHz. EISA is
not widely used, due to its high cost and complicated nature.

Peripheral
component
interconnect (PCI)

PCI was introduced by Intel in 1992, revised in 1993 to version
2.0, and later revised in 1995 to PCI 2.1. It is a 32-bit bus that is
also available as a 64-bit bus today. Many modern expansion
boards are connected to PCI slots.

Advanced graphic
port (AGP)

AGPwas introduced by Intel in 1997. AGP is a 32-bit bus designed
for the high demands of 3D graphics. AGP has a direct line to
memory, which allows 3D elements to be stored in the system
memory instead of the video memory. AGP is geared towards data-
intensive graphics cards, such as 3D accelerators; its design allows
for data transfer at rates of 266 MB/s.

Universal serial
bus
(USB)

USB is an external bus developed by Intel, Compaq, DEC, IBM,
Microsoft, NEC and Northern Telcom. It was released in 1996 with
the Intel 430HX Triton II Mother Board. USB has the capability of
transferring 12 Mbps, supporting up to 127 devices. Many devices
can be connected to USB ports, which support plug and play.

