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Introduction 
 

A computer consists of a set of physical components (hardware) and system 
programs (system software) that are responsible for data processing according to an 
algorithm, specified by the user through an application program (application software).  

Computer systems have conventionally been defined through their interfaces at a 
number of abstraction levels, each providing functional support to its predecessor. 
Included among the levels are the application programs, the high-level languages, and 
the set of machine instructions.  

In the past, the term computer architecture often referred only to instruction set 
design that represents an interface between hardware and the lowest level software - 
machine instructions (binary coded programs).   

A different definition of computer architecture is built on four basic viewpoints:  
- structure (defines the interconnection of various hardware components), 
- organization (defines the dynamic interplay and management of the various 

components),  
- implementation (defines the detailed design of hardware components),  
- performance (specifies the behavior of the computer system).  

Computer’s generations 

First manual calculator – abacus, appears in China in about 2600 BC (before 
Christ). First mechanical calculator that can add and subtract was invented in 1642 by 
the French philosopher Blaise Pascal. 

Modern electronic computers are typically grouped into four "generations." Each 
generation is marked by improvements in basic technology. Each advance has resulted 
in computers of lower cost, higher speed, greater memory capacity, smaller size and 
power consumption. 

1. First Generation (1945–1954) based on vacuum tube invented in 1906 by an 
electrical engineer named Lee De Forest. (general-purpose computers: ENIAC 
(Electronic Numerical Integrator and Computer)- 18,000 vacuum tubes, 30.5 meters, 10-
digit registers for temporary calculations; Colossus - 1,500 vacuum tubes, UNIVAC - 
5,000 vacuum tubes). These early machines were typically controlled by plug board 
wiring. 

2. Second Generation (1955–1964) based on transistors invented in the mid-
1940s by John Bardeen (1908–1991), William B. Shockley (1910–1989), and Walter H. 
Brattain (1902–1987). In this period appears and first supercomputers: UNIVAC LARC 
- Livermore Atomic Research Computer and IBM 7030 - named Strech Computer), used 
for weather prediction, nuclear research and artificial intelligence. These second 
generation machines were programmed in languages such as COBOL (Common 
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Business Oriented Language) and FORTRAN (Formula Translator). Magnetic disks and 
tape were often used for data storage. Appears the concept of parallel processing. 

3. Third Generation (1965–1978) based on integrated circuits invented by Jack 
Kilby and Robert Noyce. The integrated circuit is a single device that contains many 
transistors. Computers: IBM System/360 - was able to execute 500,000 additions per 
second. This computer was about 263 times as fast as the ENIAC. During the third 
generation of computers, the central processor was constructed by using many integrated 
circuits. It introduced single computer architecture over a range or family of devices. In 
other words, a program designed to run on one machine in the family could also run on 
all of the others. IBM spent approximately $5 billion to develop the System/360. 
Appears first minicomputers. The important characteristics of the computers of this 
generation: operating systems, multiprogramming, multiprocessing and virtual memory. 

4. Fourth Generation (1979–?) based on the microprocessors. Microprocessors 
used Large Scale Integration (LSI) and Very Large Scale Integration (VLSI) techniques 
to pack thousands or millions of transistors on a single chip. Advantages: speed, high 
integration ratio, high reliability, small costs and dimensions. 

A common law that governs the world of microprocessors is Moore's Law. 
Moore's Law states that the numbers of transistors on a single chip at the same price will 
double every 18 to 24 months. Current microprocessor chips contain millions of 
transistors and the number is growing rapidly.  

First microprocessor: Intel Company, I4004 – 4 bits organization (built in 1971) was 
the first processor to be built on a single silicon chip. It contained 2,300 transistors. 
First successful microprocessor: Intel I8080 – 8 bits processor (1972). 
First 16 bits processor:   Intel I8086 (1978).   
First 32 bit processor:    Intel I80386 (1985). 
Superscalar microprocessor architecture:  Pentium Pro (1990) 
64 bits processors, multi-core architectures:  Pentium D, Core 2 Duo, Xeon (Intel),  
Other microprocessor families:  
Motorola: 6800 (8 biti), 68000 (16 biti), 68020, 68030 (32 biti), 68040,   
Zilog: Z80, Z8000 

     Texas Instruments: - digital signal processors: TMS320c10/20/30/50/80 
      Microchip: microcontrollers: PIC12/16/18 
      MIPS (Microprocessor without Interlocked Pipeline Stages) , ARM (Advanced RISC 
Machine), etc. 

 
Tendencies and perspectives 

1. Increase of integration ration  - smaller switching elements (transistors): 45-
>35nm, increase of switching elements’ number, processors - over 1 billion 
transistors,  memory – over 64-512 billion; 

2. Power reduction  - intelligent power distribution, dynamic power control: energy 
where and when it is needed, frequency limitation; 
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3. Multi-core and multi-thread architectures (from 2 cores/chip to 128 cores and 
more, symmetric and asymmetric architectures (see Intel and Power PC); 

4. Network-on-chip  -  network communication inside the chip instead of parallel 
buses; 

5. Memory hierarchies  - more cache memory levels (inside the processor), virtual 
memory, access request anticipation; 

6. External memories of silicon  - no more hard and floppy disks of DVDs, flash 
instead; 

7. Multi-processor architectures - parallel architectures, distributed architectures; 
8. Computer networks - Internet – an indispensable computer resource, wireless 

networks; 
9. Mobile and portable computers: laptops, graphic tablets, PDA (personal digital 

assistant) also known as a palmtop computer, or personal data assistant, is 
a mobile device that functions as a personal information manager. , GPS (Global 
Positioning System), intelligent phones. 

 
Technological development 

 
Computer technology has shown an unprecedented rate of improvement. This 

includes the development of processors and memories. The integration of numbers of 
transistors into a single chip has increased from a few hundred to millions. This 
impressive increase has been made possible by the advances in the fabrication 
technology of transistors. 

The scale of integration has grown from small-scale (SSI) to medium-scale (MSI), 
then to large-scale (LSI), then to very large-scale integration (VLSI), and currently to 
wafer scale integration (WSI).  
 
                                       Numbers of Devices per Chip 
Integration Technology      Typical number of devices             Typical functions 
         SSI Bipolar                           10–20                                 Gates and flip-flops 
         MSI Bipolar & MOS             50–100                              Adders & counters 
         LSI Bipolar & MOS              100–10,000                            ROM & RAM 
          VLSI CMOS (mostly)      10,000–5,000,000                        Processors 
           WSI CMOS                        5,000,000                     DSP & special purposes 
 

1. Computer components 
 
 Virtually, all contemporary computer designs are based on concepts developed by 
John von Neumann. Such a design is referred to as the von Neumann architecture and is 
based on three concepts: 

1. Data and instructions are stored in a single read/write memory. 
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2. The contents of this memory are addressable by location, without regard to the 
type of data contained there. 

3. Execution occurs in a sequential fashion from one instruction to the next. 
 

The basic Von Neumann architecture: 
 

Computer
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The structural description of a computer consists of the following three basic blocks: 
1. CPU (Central Processing Unit).  
2. Main memory.  
3. Input/Output system.  

CPU consists of Control Unit, ALU (Arithmetic and Logic Unit) and registers and 
represents a general purpose processor in contrast with specialised processors (I/O 
processor, arithmetic processor) with a set of instructions, which means that it recognize 
and execute a set of instructions in a binary form. 

CPU and main memory forms a Central Unit . 
A Central Unit, Input/Output System and a set of system programs forms a 

computer. 
A computer and peripheral devices forms a computer system. If a microprocessor 

is used, it can be named also and a microcomputer system. 
Main memory (also named and internal memory) consists of a set of locations, 

defined by sequentially numbered addresses. Each location contains a binary number 
that can be interpreted as either an instruction or data. The internal memory can be of 2 
types: ROM (Read Only Memory) and RAM (Random Access Memory). 
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I/O system transfers data from external devices to CPU and memory and vice 
versa. It contains internal buffers for temporarily holding these data until they can be 
sent on.  

Peripheral devices: External memory devices (hard-disc, floppy-disc, compact-
disc); input devices (keyboard, mouse); output devices (printer, monitor).   

Data and instructions are communicated with the computer using input devices, 
the results are sent to output devices.  
          CPU interchanges with other components with data (operands and results), 
instructions, addresses, control signals. The communication is executed through buses.  
There are 3 types of buses: Address, Data and Control buses. Al they form the system 
bus.  

Address bus: carries the address of a unique memory or input/output (I/O) 
device. 

Data  bus:  carries  data  stored  in memory  (or  in  I/O  device)  to  the  CPU  or  
from  the  CPU  to  the  memory (or I/O device).  

Control bus: is a collection of control signals that coordinate and synchronize the 
whole system.  
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Data Bus

Address Bus
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2. Central Processing Unit 
2.1. CPU basics 

 
A typical CPU has three major components:  
(1) register set,  
(2) arithmetic logic unit (ALU),  
(3) control unit (CU).  
The register set differs from one computer architecture to another. It is usually a 

combination of general-purpose and special purpose registers.  
The ALU provides the circuitry needed to perform the arithmetic, logical and shift 

operations demanded of the instruction set. It also generates information about carry, 
overflow and other special cases. It consists of combinational logic circuits: adders, 
decoders, encoders, multiplexers and a set of registers (ex. accumulator), used as a fast 
memory in arithmetic and logic operations.  

The control unit is the entity responsible for fetching the instruction to be 
executed from the main memory and decoding and then executing it.  



 6 

The main components of the CPU and its interactions with the memory system 
and the input/output devices: 

 
 

2.2. The register set 
 
The register set is usually a combination of general-purpose and special purpose 

registers.  
General-purpose registers can be used for multiple purposes and assigned to a 

variety of functions by the programmer. Special-purpose registers are restricted to only 
specific functions. 

Examples of special purpose registers 
Two main registers are involved in fetching an instruction for execution:  
- the program counter (PC) (is the register that contains the address of the next 

instruction to be fetched). After a successful instruction fetch, the PC is updated to point 
to the next instruction to be executed. 

 -the instruction register (IR) in which the fetched instruction is loaded 
Two registers are essential in memory write and read operations:  
- the memory data register (MDR)  
-  memory address register (MAR).  
The MDR and MAR are used exclusively by the CPU and are not directly 

accessible to programmers. 
In order to perform a write operation into a specified memory location, the MDR 

and MAR are used as follows: 
1. The word to be stored into the memory location is first loaded by the CPU into MDR. 
2. The address of the location into which the word is to be stored is loaded by the 

CPU into a MAR. 
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3. A write signal is issued by the CPU. 
Similarly, to perform a memory read operation, the MDR and MAR are used as 

follows: 
1. The address of the location from which the word is to be read is loaded into the MAR. 
2. A read signal is issued by the CPU. 
3. The required word will be loaded by the memory into the MDR ready for use 

by the CPU. 
Some architectures contain a special program status word (PSW) register or a 

Flag register. The PSW contains bits that are set by the CPU to indicate the current 
status of an executing program. These indicators are typically for arithmetic operations, 
interrupts, memory protection information, or processor status. 

 
2.3. Instruction cycle 

 
The basic function performed by a computer is execution of a program, which 

consists of a set of instructions stored in memory. The CPU reads (fetch) instructions 
from memory one at a time and executes each instruction. Program execution consists of 
repeating the process of instruction fetch and execution.  

The processing required for a single instruction is called an instruction cycle. It 
consists of two steps: fetch cycle and execute cycle. The instruction cycle is the 
multiple of the clock signal.  

The fetched instruction is loaded into the IR. The processor interprets a binary 
code of the instruction and executes the required action: reads and writes data from and 
to memory, and transfers data from and to input/output devices.  

A typical and simple instruction cycle can be summarized as follows: 
1. Instruction address calculation: determine the address of the next instruction 

to be executed by adding a fixed number to the address of the previous instruction in PC. 
2. Instruction fetch: Read the instruction from its memory location and store it 

into IR. 
3. Instruction decoding: analyze instruction to determine type of operation to be 

performed and operands to be used.  
4. Operands address calculation, if needed. 
5. Operand fetch: fetch the operand from memory and store it in CPU registers, 

if needed. 
6. Instruction execution. 
7. Results store: results are transferred from CPU registers to memory, if needed. 
The instruction cycle is repeated as long as there are more instructions to execute. 
A check for pending interrupts is usually included in the cycle. Examples of 

interrupts include I/O device request, arithmetic overflow, division by zero, etc. 
Interrupts are provided primarily as a way to improve processing efficiency. For 
example, most external devices are much slower than a processor. With interrupts; the 
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processor can be engaged in executing other instructions while an I/O operation is in 
progress. .     

To accommodate interrupts, an interrupt cycle is added to the instruction cycle. In 
the interrupt cycle, the processor checks to see if any interrupts have occurred. If no 
interrupts are pending, the processor proceeds to the fetch cycle for the next instruction. 
If an interrupt is pending, the processor suspends execution of the current program, 
saves the address of the next instruction and relevant data. Then it sets the PC to the 
starting address of an interrupt handler routine. 

Start
Fetch
cycle

Execute
cycle

Halt

Interrupt
enabled

Interupt
disabled

Interrupt
cycle

 
The actions of the CPU during an instruction cycle are defined by micro-orders 

issued by the control unit. These micro-orders are individual control signals sent over 
dedicated control lines. For example, let us assume that we want to execute an instruction that 
moves the contents of register X to register Y and both registers are connected to the data bus, D. The 
control unit will issue a control signal to tell register X to place its contents on the data bus D. After 
some delay, another control signal will be sent to tell register Y to read from data bus D.  

 
2.4. I8086 microprocessor architecture 

 
The I8086 microprocessor architecture consists of two sections:  
• the execution unit (EU)    
• the bus interface unit (BIU)    
These two sections work simultaneously. BIU accesses memory and peripherals 

while the EU executes the instructions previously fetched. Thus, Intel implemented the 
concept of pipelining. Pipelining is the simplest form to allow the CPU to fetch and 
execute at the same time.   
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It only works if BIU keeps ahead of EU. Thus BIU has a buffer of queue. (6 
bytes). If the execution of any instruction takes to long, the BIU is filled to its maximum 
capacity and busses will stay idle. It starts to fetch again whenever there is 2-byte room 
in the queue.  

When there is a jump instruction, the microprocessor must flush out the queue. 
When a jump instruction is executed BIU starts to fetch information from the new 
location in the memory. In this situation EU must wait until the BIU starts to fetch the 
new instruction. This is known as branch penalty.  

 

Execution Unit 
 The Execution Unit executes all instructions, provides data and addresses to the 

Bus Interface Unit and manipulates the general registers and the Processor Status Word 
(Flags register).  

The 16-bit ALU performs arithmetic and logic operations, control flags and 
manipulates the general registers and instruction operands.  

The Execution Unit does not connect directly to the system bus. It obtains 
instructions from a queue maintained by the Bus Interface Unit. When an instruction 
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requires access to memory or a peripheral device, the Execution Unit requests the Bus 
Interface Unit to read and write data.  

Bus Interface Unit 
 The Bus Interface Unit facilities communication between the EU and memory or 
I/O circuits. It is responsible for transmitting address, data, and control signals on the 
buses. This unit consists of the segment registers, the Instruction Pointer, internal 
communication registers, a logic circuit to generate a 20 bit address, bus control logic 
that multiplexers data and address lines, the instruction code queue (6 bytes RAM).  
 

2.5. Registers set of I8086 
1. General Purpose Registers 
 The CPU has eight 16-bit general registers. The general registers are subdivided 
into two sets of four registers. These sets are the data registers (also called the H & L 
group for high and low) and the pointer and index registers (also called the P & I group). 

 
 The data registers can be addressed by their upper or lower halves. Each data 
register can be used interchangeably as a 16-bit register or two 8-bit registers. The 
pointer and index registers are always accessed as 16-bit values. The µp can use data 
registers without constraint in most arithmetic and logic operations. Arithmetic and logic 
operations can also use the pointer and index registers. Some instructions use certain 
registers implicitly allowing compact encoding. 
SP - Stack Pointer : Always points to top item of the stack.  
BP - Base Pointer: It is used to access any item in the stack; 
SI - Source Index: Contains the address of the current element in the source string;  
DI - Destination Index: Contains the address of the current element in the destination 
string;  
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2. Segment registers 

 The mp 8086 has a 20-bit address bus for 1 Mbyte external memory but inside the 
CPU registers have 16 bits that can access 64 Kbytes. The 8086 family memory space is 
divided into logical segments of up to 64 Kbytes each. The segment registers contain the 
base addresses (starting locations) of these memory segments.    

• CS  (code segment) - points at the segment containing the current program.  
• DS (data segment)- generally points at the segment where variables are defined.  
• ES (extra segment)- extra segment register, it's up to a coder to define its usage.  
• SS (stack segment)- points at the segment containing the stack.  

3. Special purpose registers 

IP - the instruction pointer or program counter: Always points to next instruction to 
be executed. It contains the offset (displacement) of the next instruction from the start 
address of the code segment.  
Flags Register - determines the current state of the processor. It is also called PSW 
(processor state word). From 16 bits are used only 9. Flags Register is modified 
automatically by CPU after mathematical operations, this allows to determine the type 
of the result, and to determine conditions to transfer control to other parts of the 
program. Generally you cannot access these registers directly.  
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
    Of df if tf sf Zf  Af  pf  cf 
 
All flags can be divided into condition (status) flags and control (system) flags. 

Condition flags:  
• 0 bit -Carry Flag (CF) - this flag is set to 1 when there is a carry (borrow) from 

the 8 or 16 bit in addition or subtraction operation. For example when you add 
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bytes 255 + 1 (result is not in range 0...255). When there is no a carry or borrow 
this flag is set to 0. It is also used to store the value of the MSB in shift operations. 

• 2 bit - Parity Flag (PF) - this flag is set to 1 when there is even number of one 
bits in result, and to 0 when there is odd number of one bits. Even if result is a 
word only 8 low bits are analyzed!  

• 4 bit - Auxiliary Flag (AF)  - set to 1 when there is an unsigned overflow for low 
nibble (4 bits).  

• 6 bit - Zero Flag (ZF) - set to 1 when result is zero. For none zero result this flag 
is set to 0. 

• 7 bit - Sign Flag (SF) - set to 1 when result is negative. When result is positive it 
is set to 0. Actually this flag take the value of the most significant bit.  

• 11 bit - Overflow Flag (OF) - set to 1 when there is a signed overflow. For 
example, when you add bytes 100 + 50 (result is not in range -128...127).  

 
Control flags: 
•  8 bit - Trap Flag (TF) System flag - Used for on-chip debugging (pas cu pas) 

when TF=1. In this case the interrupt is generated (int 1) which calls a special 
routine to show the state of internal registers. There are no instructions to change 
this flag. The content of PSW is written in one general Rg through the stack to can 
change it. 

• 9 bit - Interrupt enable Flag (IF) System flag - when this flag is set to 1 CPU 
reacts ( se permit) to interrupts on INTR input of the mp from external devices. 
When IF=0 interrupts are not allowed (masked). IF do not react to NMI (non 
maskable) interrupts and to internal interrupts performed by instruction INT. 
Instructions CLI (clear interrupt) and STI (set interrupt) are used to control this 
flag. 

• 10 bit - Direction Flag (DF) - this flag is used by some instructions to process 
data chains, when this flag is set to 0 - the processing is done forward (increment 
of SI and DI registers), when this flag is set to 1 the processing is done backward  
-  decrement (instructions CLD and STD). 

Exercises 

Determine the value of CF, ZF, SF, OF, PF and AF after the following addition 
operations:  
1. 342Ah+57E2h=8C0Ch  
2. E42Ah+96B8h=7AE2h          
3. C739h+38C7h=0000h            
4. F502h+1A7h  =F6A9h        
5. 6BD3h+90F1h=FCC4h 
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3. Instruction set architecture 
The instruction set architecture (ISA) includes: 

- instruction set in a binary code (machine language) that is recognized by a 
processor; 

- data types with which instructions can operate; 
- environment in which instructions operate. 
ISA is an interface between software and hardware: 

Program in a high
level language

Program in ASM

ISA level

Hardware

Compilation to machine
language program

Assembler to machine
language program

ISA program executed by a
microprogram or hardware

Software

Hardware

 
Technically, CPUs come in two main architectures:  
- CISC (Complex Instruction-Set Computing)  
- RISC (Reduced Instruction-Set Computing).  
CISC chips (Motorola 68k and Intel x86 architectures) sacrifice speed in favour of 

having a complete set of built-in instructions on the chip. RISC chips (Power PC, ARM, 
SPARC) contain fewer instructions but can execute their tasks much faster. 

A computer program can be represented at different levels of abstraction. A 
program could be written in a machine-independent, high-level language such as Java or 
C++.  

A computer can execute programs only when they are represented in machine 
language specific to its architecture.  

A machine language program for a given architecture is a collection of machine 
instructions represented in binary form that are recognised by a Control Unit (CU). 
According to this binary code, CU selects a certain transition states algorithm and 
generates control signals to ALU and registers. The algorithm can be microprogramed or 
hardwired.   

Programs written at any level higher than the machine language must be translated 
to the binary representation before a computer can execute them.  

An assembly language program is a symbolic representation of the machine 
language program. 

Converting the symbolic representation into machine language is performed by a 
special program called the assembler.  

Although high-level languages and compiler technology have witnessed great 
advances over the years, assembly language remains necessary in some cases.  
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- Programming in assembly can result in machine code that is much smaller and 
much faster than that generated by a compiler of a high-level language. Small and fast 
code could be critical in some embedded and portable applications, where resources may 
be very limited. In such cases, small portions of the program that may be heavily used 
can be written in assembly language.  
- Assembly programmers have access to all the hardware features of the target 
machine that might not be accessible to high-level language programmers.  
- learning assembly languages can be of great help in understanding the low level 
details of computer organization and architecture.  

Machine language is the native language of a given processor. Since assembly 
language is the symbolic form of machine language, each different type of processor has 
its own unique assembly language. Before we study the assembly language of a given 
processor, we need first to understand the details of that processor. We need to know the 
memory size and organization, the processor registers, the instruction format, and the 
entire instruction set.  

 
3.1 Main memory model 

 Instructions and data are stored in main memory.  
 The (main) memory can be modeled as an array of millions of adjacent cells, each 
capable of storing a binary digit (bit), having value of 1 or 0. These cells are organized 
in the form of groups of fixed number of cells.  

An entity consisting of 8 bits is called a byte, of 16 bits – a word, of 32 bits – a 
double word.  It is, however, customary to express the size of the memory in terms of 
bytes. For example, if the size of a memory of a personal computer is 256 Mbytes, that 
is, 256 x 220 =228 bytes. 

In order to be able to move a byte in and out of the memory, a distinct address has 
to be assigned to each byte.  

The number of bits, l, needed to distinctly address M bytes in a memory is given 
by 2logl M= . For example, if the size of the memory is 1 MB, then the number of bits in 
the address is 20

2log (2 ) 20=  bits. Alternatively, if the number of bits in the address is l, 
then the maximum memory size (in terms of the number of bytes that can be addressed 
using these l bits) is 2lM = .  
               7                                       0 

 

 

 

 

FFFFF  
FFFFE  
FFFFD  
…….  
…….  
10000  
0FFFF   
…….  
00001  
00000  
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The addressable memory of I8086 contains 220 bytes (1 Mb). The physical 
addresses are within the range 00000-FFFFFh.  

Locations 0H-7FH (128 bytes) and FFFF0-FFFFF (16 bytes) are reserved for 
special use (interrupts and system start after reset) 

Any 2 neighbour bytes can store a word (16 bits). The smaller address contains 
the smaller byte. The address of the word is the address of its smaller byte. So, one 
address can be viewed as a byte address and a word address. This strategy to store 
data is called Little Endian (the opposite strategy is called Big Endian and it applied 
by Motorola, Spark and most RISC machines). 

 
  22 H        Unaligned 
  21 H            DW 
  20 h              DB 
                   24B H                    46       1F H        Aligned 
                   24A H                00    1E H          DW 
                    249 H                  65  1D H         DB 
                    248 H              3A      1C H         DB 

247 H 8C 1B H         Instruction 
246 H 04 1A H           

  19 H          Instruction 
 
The value of a binary word at address 246H is 8C04 H, of a DD at address 248 H 

- 4600653A. 
The word with even address is called aligned. The word with odd address is called 

unaligned. The mp transfer words with even addresses in 1 memory access cycle and 
words with odd addresses in 2 cycles. That’s why it’s recommended to store data on 
even addresses. 

3.2 Memory segmentation 

Segmentation provides a powerful memory management mechanism: 
1. It allows programmers to partition their programs into modules that operate 

independently of one another. 
2.  Segments provide a way to easily implement object-oriented programs. 
3. Segments allow two processes to easily share data.  
4. It allows extending the addressability of a processor. In the case of the 

8086, segmentation let Intel's designers extend the maximum addressable 
memory from 64KB to 1MB. 

Disadvantage: Difficulties with physical address manipulation in programs.  
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Memory looks like a linear array of bytes. A single index (address) selects some 
particular byte from that array. Segmented addressing uses two components to specify a 
memory location: a segment value and an offset within that segment.  

A full segmented address contains a segment component and an offset component 
- segment:offset. 

On the 8086 through the 80286, these two values are 16 bit constants. On the 
80386 and later, the offset can be a 16 bit constant or a 32 bit constant.  

The size of the offset limits the maximum size of a segment. On the 8086 with 16 
bit offsets, a segment may be no longer than 216=26*210=64KB; it could be smaller 
(and most segments are), but never larger. The 80386 and later processors allow 32 bit 
offsets with segments as large as 232=22*230=4GB.  

The segment portion is 16 bits on all 80x86 processors. This lets a single program 
have up to 65,536 different segments in the program.  

All memory space is considered as a set of 64 Kbyte size segments. The segments 
are defined for each application. Segments are considered to be independent and 
uniquely addressable. For each program can be currently addressed 4 segments using 
CS, DS, ES and SS. Memory segments can be different, can have common memory 
spaces or can even coincide. Segment rgs are initialised at the beginning of the 
application. They contain the base (low) address of the segment which is always a 
multiple of 16 (4 low bits are considered 0).   

segment A segment B

segment C

segment D

segment E

0 H 10000 H 20000 H 30000 H  

Physical address calculation 
Despite the fact that the 80x86 family uses segmented addressing, the physical 

memory connected to the CPU is still a linear array of bytes.  
Addresses in the programs - logical addresses.  
The linear address that appears on the address bus - physical address. 

 
Logical address notation   segment: offset 
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Physical address calculation   segment*10H+offset 
Segment*10H is equivalent to 1 hexadecimal (4 bits) shift left. To calculate the 

physical address in BIU the base address is shift 4 bits left and the offset is added.  
 For example if (CS)=123A h and (IP)=341B h,  the physical address will be 

123 0

341

157

A the base address of the segment

B offset
BB   a physical address                     

   

The carry from MSB is ignored that give the possibility of ring memory 
organization: after FFFFF byte follows 00000 byte. It is true for segments also.  
 

Sources of physical address: 

Type of memory access Implicit segment Alternative segment Offset 

Instruction fetch CS - IP 

Stack operation SS - SP 

Variable DS CS, ES, SS EA 

String source DS CS, ES, SS SI 

String destination ES - DI 

BP as base Rg SS CS, DS, ES EA 

EA – effective address. EA is the offset of a variable that is calculated by EU according to the 
memory addressing mode specified in the instruction for this variable. There are a total of 17 different 
memory addressing modes on the 8086. By default BX, SI and DI  registers work with DS segment 
register; 
Exercises 
Memory organization  
 
1. Calculate the physical address according to the following logical addresses: 
a) 1205H : 709H,      
b) ABCDH : 89ABH,   
c) FFF0H : 0FFH,   
d) 3333H : 4444H,   
e) 8000H : 8000H.   
 
2. Calculate the offset according to the following physical addresses (CS=2000H) : 
a) 20002H,     
b) 20010H,    
c) 20300H,    
d) 24000H,    
e) 2FFFFH.    
3. Calculate CS according to the following physical addresses (offset is 400H) :  
a) 10400H,    
b) B0400H,    
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c) 30800H,    
d) CDE00H,    
e) FFFF0H.    
4. Which of the following physical addresses belong to the segment with CS=2400H: 
a) 33FFFH,    
b) 23000H,    
c) 27890H,    
d) 33000H,    
e) 34000H. 
5. Physical address of the variable is 358BC H when CS=3234 H. Calculate the physical address of the 
variable when CS is changing 4310 H.     

3.3. Stack memory 

A stack memory is a small area of reserved memory used in the following cases: 
1. To store temporary the data from general purpose registers; 
2. To store the content of PSW, CS and IP when an interrupt or a procedure is 

processed: 
3. To transmit the procedures parameters. 
The stack organization principle is LIFO. 
Stack location is determined by SS:SP. SS holds the base address of stack and SP 

holds the offset of the top of the stack (the most recent stack entry). Instructions to 
operate with stack are: 

PUSH - Copy specified word to top of the stack. 
POP - Copy word from top of the stack to specific location. 

SS (Base)

SP(Top)

Stack limit

Main memory

Reserved
stack
block

000000

FFFFFF

CPU registers

Free

In use

 
According to Intel convention the stack grows from higher addresses to lower 

addresses ( according to Motorola convention the stack grows from lower addresses to 
higher addresses).  The base of the stack (SS) is at the high address end of the reserved 
stack block and the limit is at the low address end. If all stack elements are 16-bit words 
(2 bytes), instruction PUSH will cause the decrement of SP with 2 and POP will cause 
the increment of SP with 2.  
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 Instruction format 
 

 Assembly language is the symbolic form of machine language. Assembly 
programs are written with short abbreviations that represents the actual machine 
instruction called mnemonics.  
.  The use of mnemonics is more meaningful than that of hex or binary values, 
which would make programming at this low level easier and more manageable. 
 Examples: Mov - move, Add – addition, Sub – subtraction, Mul – multiplication. 

An assembly program consists of a sequence of assembly statements, where 
statements are written one per line. Each line of an assembly program is split into the 
following four fields: label, operation code (opcode), operand, and comments. 

 
Labels are used to provide symbolic names for memory addresses. A label is an 

identifier that can be used on a program line in order to branch to the labeled line. It can 
also be used to access data using symbolic names. The operation code (opcode) field 
contains the symbolic abbreviation of a given operation. The operand field consists of 
additional information or data that the opcode requires. The operand field may be used 
to specify constant, label, immediate data, register, or a memory address. The comments 
field provides a space for documentation to explain what has been done for the purpose 
of debugging and maintenance. In I8086 instruction consists from one to six bytes. 

According to the length of the instructions exists two types of ISA: 
1. With fixed length instructions (commonly used in RISC architectures) 
2. With variable length instructions (commonly used in CISC architectures) 
The advantage of using variable length instructions is that they reduce the amount 

of memory space required for a program. In I8086 instructions are from one byte to a 
maximum of 6 bytes in length. 

The advantage of fixed length instructions is that they make the job of fetching 
and decoding instructions easier and more efficient, which means that they can be 
executed in less time than the corresponding variable length instructions.  

Instructions can be classified based on the number of operands as: three-address, 
two-address, one-address, and zero-address.  

Examples: 
3 addresses Add x,y,z (z)=( x)+(y) 
2 addresses Add ax,bx (Ax)=(ax)+(bx) 
1 addresses Mul bl (Ax)=(al)*(bl) 
0 addresses Push bx Top of the stack ← (bx) 
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Three-address instruction formats are not common, because they require a 
relatively long space to hold all addresses.  

In two-address instruction one address is an operand and also a result.  
In one-address instruction a second address is implicit. Usually it is the 

accumulator AX. It is used for one operand and the result. 
Zero-address instructions are applicable to stack memory and use as address the 

content of SP (top of the stack). 
The number of addresses per instruction is a basic design decision. Fewer 

addresses per instruction result in more primitive instructions, which require a less 
complex CPU. It also results in instruction of shorter length. On the other hand programs 
contain more total instructions and have a longer execution time. Another problem: with 
one-address instructions, the programmer has available only one general-purpose 
register – the accumulator, with multiple address instructions it is common to have 
multiple general-purpose registers. Because register references are faster than memory 
references this speeds up execution. Most contemporary machines employ a mixture of 
two- and three- address instructions. 

 
3.5. Addressing Modes  

The different ways in which operands can be addressed are called the addressing 
modes. Addressing modes differ in the way the address information of operands is 
specified.  

EA - actual (effective) address (EA) of the location containing the operand; 
The addressing modes available in 8086 are: 

1. Immediate Addressing Mode: 
According to this addressing mode, the value of the operand is (immediately) 

available in the instruction itself.  
Operand=A, 

where A - the content of the address field in the instruction 
Typically immediate operand represents constant data (a byte or word). The 

number is stored in two’s complement form.  
Examples: 

mov al, 48 ;  load 30H in AL; 
mov cx,2056H 
xor si,1    ; invert LSB in SI register; 
and al,80H ; highlight MSB of AL 
or di, 8000H ; set to 1 MSB of DI 

The advantage of immediate addressing is that no memory reference other than 
the instruction fetch is required to obtain the operand. The disadvantages: the size of the 
number is restricted to the size of the address field; a change in the value of an operand 
requires a change in every instruction that uses the immediate value of such an operand. 
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2. Register Addressing Mode: 

To access the content of the register it is necessary to specify the name of the 
register. The eight and 16 bit registers are certainly valid operands for this instruction. 
The only restriction is that both operands must be of the same size.  
                mov     ax, bx  ;Copies the value from BX into AX 
                mov     dl, al  ;Copies the value from AL into DL 
                mov     ax, ax  ;Yes, this is legal and it performs nothing! 
                add bx,di; bx=bx+di 
                sub cl,ah  ; cl=cl-ah 
 Advantage: the registers are the best place to keep often used variables. 
Instructions using the registers are shorter and faster than those that access memory.  
 Disadvantage: limited address space and the limited number of general purpose 
registers. 
 
3. Direct Addressing mode (displacement only) (6 clock cycles) 

In the direct addressing mode the address field contains the EA of the operand. 
EA=A 

It consists of a 16 bit constant that specifies the address of the target location.  
mov al, [8088h]; loads the Al register with a copy of the byte at memory location 8088h.  
mov [1234h],dl ;  stores the value from the Dl register to memory location 1234h: 

 

 
 
By default, all displacement-only values provide offsets into the data segment. If 

you want to provide an offset into a different segment, you must use a segment override 
prefix before your address. For example, to access location 1234h in the extra segment 
(es) you would use an instruction of the form 

 mov ax,es:[1234h].  

You can also access words on the 8086 processors : 
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Other examples: 
BETA    dw   1234h 
............................ 
MOV CX, BETA ; move the contents of the memory location, which is offset by 

BETA from the current value in DS into internal register CX. 
Inc COUNT 
Mul X ; multiply ax with variable X 
Ror TEMP ; shift right variable TEMP 

In inc, mul, ror instructions it is impossible to determine the size of a variable 
 Inc word ptr COUNT 

Ror byte ptr TEMP  
The technique was common in earlier generations of computers but is not 

common on contemporary architectures. It requires only one memory reference and no 
special calculation. The disadvantage is that it provides only a limited address space. 

 
4. Register Indirect Addressing mode: (5 clock c) 
In the register indirect mode, in the instruction is included a name of a register 

that holds the EA of the operand. In this case name of the register is included in 
parentheses. EA=[R] 

There are four forms of this addressing mode on the 8086, best demonstrated by 
the  following instructions:  
                mov     al, [bx] 
                mov     al, [bp] 
                mov     al, [si] 
                mov     al, [di] 
The [bx], [si], and [di] modes use the ds segment by default. The [bp] mode uses the 
stack segment (ss) by default. 
Example: 
MOV AL, [BX] ; This instruction moves the contents of the memory location DS:BX to 
the AL register. 

 
    
  MOV AL, [BP] ; This instruction moves the contents of the memory location 
SS:BP to the AL register. 
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add AX,[DI] ; add to AX the content of memory cell DS*10H+DI (DS:DI) 

 div word ptr [SI] ; divide the word from memory 
 xor [BP], DL 
 This addressing mode allows calculating the address during program execution 
that is useful in case of addressing of different data with one instruction. 

 
5. Based Addressing mode: (9clock c) 
In this addressing mode the register contains a memory address and the address 

field contains a displasement from that address. It is a convenient means of 
implementing segmentation. 

In such addressing EA=disp+[BP] or [BX]. It is useful in case of addressing to 
certain element in data arrays, when disp or element number is known and base address 
is calculated during program execution. 

The based addressing mode use the following syntax:  
                mov     al, disp[bx]          mov     al, [bx+disp] 
                mov     al, disp[bp]          mov     al, [bp+disp] 
The displacement field can be a signed eight bit constant or a signed 16 bit constant.  

 
  
mov AX, [BP+10] ; load in AX the 6th word of the array  
 
If bx contains 1000h, then the instruction  

mov cl,20h[bx]  will load in cl the content of memory location ds:1020h.  
If the length of the addressing field is K, then with one segment-base register we 

can address 2K words.  
 
6. Indexed Addressing mode: (9 clock c) 
 
In this addressing mode, the address field contains a main memory address and 

the register, called the index register, contains a positive displacement from that address.  
The indexed addressing modes use the following syntax:  

                mov     al, disp[si]           mov     al, [si+disp] 
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                mov     al, disp[di]           mov     al, [di+disp] 
The displacement field can be a signed eight bit constant or a signed 16 bit constant.  

In such addressing EA=disp+[SI] or [DI]. It is useful in case of itterative 
operations, when disp is the address of the first element and SI or DI value specified the 
element. First they are initialised to 0 and after each operation the index register is 
incremented.  

 
Inc DI 
…… 
Mov Z[DI], AX; move the content of AX to array element 
add AX, ARRAY[SI] ; add  AX with the element of ARRAY, 

         
7. Based Indexed Addressing Mode: (7-8 clock c) 
 
The based indexed addressing modes are simply combinations of the register 

indirect addressing modes. These addressing modes form the EA by adding together a 
base register (bx or bp) and an index register (si or di). The allowable forms for these 
addressing modes are  
                mov     al, [bx][si]          mov     al, [bx+si] 
                mov     al, [bx][di] 
                mov     al, [bp][si] 
                mov     al, [bp][di] 

 
 
Suppose that bx contains 1000h and si contains 880h. Then the instruction 
  mov al,[bx][si]  
will load al from location DS:1880h. Likewise, if bp contains 1598h and di contains 
1004, 

 mov ax,[bp+di]  
will load the 16 bits in ax from locations SS:259C and SS:259D. 
It is useful in case of addressing to certain element in two dimensional arrays or to an 
array from stack (BP is the address of stack element). 
 

 
8. Based Indexed Plus Displacement Addressing Mode (11-12 clock c) 
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These addressing modes are a slight modification of the base/indexed addressing 
modes with the addition of an eight bit or sixteen bit constant. The following are some 
examples of these addressing modes: 
                mov     al, disp[bx][si] 
                mov     al, disp[bx+di] 
                mov     al, [bp+si+disp] 
                mov     al, [bp][di][disp] 

 

Suppose bp contains 1000h, bx contains 2000h, si contains 120h, and di contains 5. 
Then  mov al,10h[bx+si] loads al from address DS:2130;  

mov ch,125h[bp+di] loads ch from location SS:112A;  
mov bx,cs:2[bx][di] loads bx from location CS:2007. 
 
Generally, the more complex an addressing mode is, the longer it takes to 

compute the effective address. Complexity of an addressing mode is directly related to 
the number of terms in the addressing mode. For example, disp[bx][si] is more complex 
than [bx].  

The displacement field in all addressing modes except displacement-only can be a 
signed eight bit constant or a signed 16 bit constant. If your offset is in the range -
128...+127 the instruction will be shorter (and therefore faster) than an instruction with a 
displacement outside that range. The size of the value in the register does not affect the 
execution time or size. So if you can arrange to put a large number in the register(s) and 
use a small displacement, that is preferable over a large constant and small values in the 
register(s). 

If the effective address calculation produces a value greater than 0FFFFh, the 
CPU ignores the overflow and the result wraps around back to zero. For example, if bx 
contains 10h, then the instruction mov al,0FFFFh[bx] will load the al register from 
location ds:0Fh, not from location ds:1000Fh. 

 
3.6. Data types 

 
 Machine instructions operate on data. The most important categories of data are: 

Addresses (can be considered to be unsigned integers) 
Numbers (integer or fixed point, floating point and decimal) 
Characters (The most commonly used character code is ASCII code) 
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Logical data 
A variable can be viewed in any numbering system: 

• HEX  - hexadecimal (base 16). 
• BIN  - binary (base 2). 
• OCT - octal (base 8). 
• SIGNED - signed decimal (base 10).                                                                  
• UNSIGNED - unsigned decimal (base 10). 
• BCD packed  (one digit – 4 bits) and unpacked (one digit – 8 bits) 
 

DB define a byte 
DW define a word 
DD define a double word 
 
 
X DB 104,-1 
Y DW 100,200H 
 
DATA DB 3*20, -1, 100 DUP(?),? 
Packed DB 78H,56H   
Unpacked DB 7H,8H,5H,6H 
There are 2 type of data definition: digital and addressable. 
 
Myseg segment  
X DB 0FFH; one byte equal to FF 
Y DW 1234H; one word equal to 1234 
Z DW Z; one word = 0003 
Var DW Var+5; one word = 000A (the offset of the variable +5) 
Ate DB 5*6; one byte =1E 
Ss DW ?; one word without initialisation 
Myseg ends 
 
Characters string definition: Each character is stored in one byte. 
The address of the string is the address of the smaller byte. 
Message DB ‘HELLO’ ( ASCII code in memory H(48), E(45), 
E(4C), O(4F) 
Block     DB 128(‘ ’) 128 spaces 
 

3.7. Instruction types 
The X86 family of processors defines a number of instruction types.  
I.Data transfer instructions 
1. General-purpose data transfer 

              MOV dst,src (dst)←(src) copies the second operand to the first operand. 

X 68  
 FF  
Y 64 
 00 

I word 

 00 
 02 

II word 

myseg 7     0     
X FF 0 
Y 34 1 
 12 2 
Z 03 3 
 00 4 
Var 0A 5 
 00 6 
ate 1E 7 
ss XX 8 
 XX 9 
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    XCHG dst,src (dst)↔(src) Exchange bytes or exchange words.  
2. Data transfer with stack 

               PUSH  src    Copy specified word to top of stack. 
               POP  dst       Copy word from top of stack to specific location. 
           3. Flag transfer  
               PUSHF         Copy flag register to top of stack. 
               POPF            Copy word at top of stack to flag register  
               LAHF Load AH with the low byte of the flag register. No operands 
               SAHF Store AH register into low 8 bits of Flags register. No operands 

4. Address transfer  
              LEA reg,src Load effective address of operand in specified register. Lea SI, X 
              LDS reg, src Load DS register and other specified register from memory. LDS        
SI, Y   where Y is dd- double word 
              LES reg,src Load ES register and other specified register from memory. 

5. I/O port transfer 
    IN ac, port ; Copy a byte or word from specified port to accumulator (AX or 
AL).   
    IN ac, DX 
    OUT port, ac Copy a byte or word from accumulator to specified port. 
    OUT DX, ac 

 
II. Arithmetic instructions 

 Arithmetic operations are executed on integer numbers in 4 formats:  
unsigned binary (byte or word ) 5h -  0000 0101 
signed binary (byte or word), -5h or FAh   1111 1011 
packed decimal ( the string of decimal digits are stored in consecutive 4-bit groups : 
3251- 0011 0010 0101 0001)  
unpacked decimal ( each digit is stored in  low 4-bit part of the byte: 3251 - ****0011 
****0010 ****0101 ****0001) 
 All arithmetic instructions influence flags that can be checked with conditional 
transfer instructions.  
 Arithmetic operations can use all addressing modes but one operand should be a 
register. 
ADD dst, src,   dst←(dst)+(scr) src can be also immediate value of 8 or 16 bits 
ADC dst,src, dst←(dst) + (src)+CF. It is used in multiple precision operations 
SUB dst, src     dst←(dst)-(src Subtract byte from byte or word from word.                    
SBB dst, src      dst← (dst)-(src)-CF 
INC  opr ,      opr←(opr)+1 do not change CF. 
DEC opr, opr←(opr)-1 
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NEG opr     opr←-(opr) Negate – invert each bit of a specified byte or word and add 1 
(form 2’s  complement). 
CMP opr1, opr2     opr1-opr2 Compare two specified bytes or two specified words and 
do not keep the result, just for flags(OF, SF, ZF, AF, PF, CF according to result). It is used 
with conditional jump instructions. 
CBW (no opr) (for signed binary) converts byte to word. If the high digit in AL is 0 then 
all AH bits are 0, if high bit in AL is 1 then all AH bits are 1. 
     .model small  
   .data 
    x db -10 
 y dw    1234h 
 z dw ? 
 .code 
 start:  mov ax,@data 
 mov ds,ax 
 mov al, x  ;AL=F6 
 cbw ;  converteste octetul la cuvant AX=FFF6 h 
 add ax, y  ;AX=122Ah 
 mov z, ax 
  end start 

 
CWD convert word to double word. Works with AX and DX (high word) 
MUL src      (AX) ←(AL)*(src) for bytes  CF and OF =1 if the high byte is not 0 
                     (DX:AX) ←(AX)*(src) for words 
IMUL  src Multiply signed byte by byte or signed word by word   CF and OF =1 if the 
high byte is not the extension of sign 
EX. (AL)=B4    1011 0100cc (11001100)cd       -76 (signed) or 180(unsigned) 
         (BL)=11h(17 decimal) 
         IMUL will form FAF4=-129210 CF=OF=1 
 MUL will form 0BF4=306010 CF=OF=1 
DIV src        divisor is a byte 
                    (AL) ) ← quotient (AX)/(src) 
                     (AH) ) ←remainder (AX)/(src) 
                     divisor is a word 
                    (AX) ) ← quotient (DX:AX)/(src) 
                     (DX) ) ←remainder (DX:AX)/(src) 
IDIV  src Divide signed word by byte or signed double word by word.   
(AX)=0400      102410 
(BL)=B4 (-76 or 180) 
DIV BL        quotient (AL)=05=510     remainder (AH)=7C=12410 

IDIV BL       quotient (AL)=F3=-1310     remainder (AH)=24=3610 
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Packed BCD arithmetic 
DAA  Decimal adjust After Addition. 
 DAS Decimal adjust After Subtraction. 
 

Unpacked BCD arithmetic 
 

AAA  - ASCII (Unpacked) BCD correction after addition  
AAS  - ASCII (Unpacked)  BCD correction after subtraction. 
AAM   - ASCII adjust after multiplication 
Corrects the result of multiplication of two BCD values.  
Algorithm:  

• AH = AL / 10  
• AL = remainder  

Example: 
MOV AL, 15   ; AL = 0Fh 
AAM          ; AH = 01, AL = 05 
RET 

AAD   - ASCII adjust before division; 
Prepares two BCD values for division.  
Algorithm:  

• AL = (AH * 10) + AL  
• AH = 0  

Example: 
MOV AX, 0105h   ; AH = 01, AL = 05 
AAD             ; AH = 00, AL = 0Fh (15) 
RET 

 
III. Unconditional transfer instructions: 
JMP operand , where operand can be a short, near, or far address  

A jump operation reaches a short address by a one-byte offset, limited to a distance of -
128 to 127 bytes (the same segment).  
A jump operation reaches near address by a one-word offset, limited to a distance of  
-32,768 to 32767 bytes within the same segment (the same segment).  
A far address may be another segment and is reached by a segment address and offset;   
Address specification:  
a) implicit 
b) using PTR directive:  

     JMP SHORT PTR operand 
 JMP NEAR PTR operand 
 JMP FAR PTR operand 
 
           IV. Conditional transfer instructions 
 All instructions have the following format:  opcode   data8 
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The first byte is the operation code and the second byte is the 8- bit displacement to the 
next instruction in 2-s complement system. The negative displacement means go back 
and positive disp. means go forward. 8-bit displacement constraint the distance of 
jumping in range of  -128…127. Address of jumping  (IP)-128 ...  (IP)+127  

These instructions are often used after a compare instruction. The terms B (below) 
and A (above) refer to unsigned binary numbers. Above means larger in magnitude. The 
terms G (greater than) or L (less than) refer to signed binary numbers. Greater than 
means more positive. 
 

instruction Jump 
condition 

function 
 

JE, JZ ZF=1 Jump if equal/Jump if zero 
JNE, JNZ ZF=0 Not Zero, Not Equal 

JS SF=1 Sign 
JNS SF=0 Not Sign 
JO OF=1 Overflow 

JNO OF=0 Not Overflow 
JP, JPE PF=1 Parity, Parity Even 

JNP, JPO PF=0 Not Parity, Parity Odd 
JB, JNAE, 

JC 
CF=1 Below, Not Above or 

Equal, Carry 
JNB, JAE, 

JNC 
CF = 0 Not Below, Above or 

Equal, Not Carry 
JL, JNGE SF≠OF Less, Not Greater or Equal 
JLE,JNG SF≠OF sau 

ZF=1 
Less or Equal, Not Greater 

JBE, JNA CF=1 sau 
ZF=1 

Below or Equal, Not 
Above 

JNL, JGE SF=OF Not Less, Greater or Equal 
JNLE, JG SF=OF şi 

ZF=0 
Not Less or Equal, Greater  

JNBE, JA CF=0 şi ZF=0 Not Below or Equal, 
Above 

JNP, JPO PF=0 Not Parity, Parity Odd 
 
Ex1. 

; IF ((X > Y) AND (Z < T)) OR (A <> B) THEN C := D; 
; Test the boolean expression: 
mov ax, A 
cmp ax, B 
jne DoIF 
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mov ax, X 
cmp ax, Y 
jng EndOfIf 
mov ax, Z 
cmp ax, T 
jnl EndOfIf 

DoIf:  mov ax, D 
mov C, ax 

; End of IF statement 
EndOfIF: 
  
Ex. 2 
mov    al, 25     ; set al to 25.  
mov    bl, 10     ; set bl to 10.  
cmp    al, bl     ; compare al - bl.  
je     equal      ; jump if al = bl (zf = 1).  
mov ah,6 
mov dl, 'n' 
int 21h 
jmp    stop       ; so print 'n', and jump to stop.  
equal:            ; if gets here,  
mov ah,6 
mov dl, 'y' 
int 21h 
stop: 
ret               ; gets here no matter what. 
   
V. Control instructions: 
a) Iteration control instructions: 
These instructions can be used to execute a series of instructions some number of times.  
LOOP  opr ;Loop through a sequence of instructions until CX= 0 
LOOPE/LOOPZ  opr  ; Loop through a sequence instructions while ZF= l and CX ≠ 0 
LOOPNE/LOOPNZ opr   ;Loop through a sequence instructions while ZF=0 and CX ≠ 0 
JCXZ ;  Jump to specified address if CX=0 
 
b) Processor control instructions 
STC  ;Set carry flag CF to 1 
CLC   ;Clear carry flag CF to 0 
CMC  ;Complement the state of the carry flag CF 
STD   ;Set direction flag DF to l (decrement string pointers) 
CLD  ;Clear direction flag DF to 0 
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STI    ;Set interrupt enable flag to 1 (enable INTR input) 
CLI    ;Clear interrupt enable flag to 0 (disable INTR input) 
 
c) Execution control instructions: 
HLT  ;Halt (do nothing) until interrupt or reset 
WAIT  ; Wait (do nothing) until signal on the test pin is low 
ESC    ;Escape to external coprocessor such as 8087 or 8089 
LOCK   ;An instruction prefix. Prevents another processor from taking the bus while the 
adjacent instruction executes 
NOP   ;No action except fetch and decode (the same function as CONTINUE in loop 
operations) 
 
VI. Logic instructions 
NOT opr ; Invert each bit in a byte or word. Do not change the flags. 
AND dst, src  (dst) ←(dst) ∧ (src)  CF=0 OF=0 ; AND the content of a byte or a word 
with another byte or word. 
AND al,5Bh 
(al)= 95h=10010111     
mask      =01011010    reset to 0 bits 0,2,5,7  
   al        =00010010     
OR dst, src  (dst) ←(dst) ∨ (src)  CF=0 OF=0 ; OR the content of a byte or a word with 
another byte or word. 
OR al,80h       OR al, 10000000B 
(al) = 1Ah=00011010 
mask         =10000000 set to 1 7-th bit 
al                 10011010 
XOR dst, src  (dst) ←(dst)⊕(src)  CF=0 OF=0 ; Exclusive OR the content of a byte or a 
word with another byte or word. 
XOR al, 0FFh; invert all bits in AL 
TEST opr1,opr2   opr1∧opr2 ;      Do not store the result. It is used for flags setting. 
It can be used with a mask. If any 1s bits of mask correspond to 1s bits of operand then 
ZF=0, over wise ZF=1.  
As usual after TEST are used JZ or ZNZ instructions 
Example :                              al=10101101 
                   not al                   al=01010010 
                   Test al,81h     mask=10000001 
                   jz exit             test   =00000000 
 
Example. Find the absolute value of the number.  
 
Mov ax, 8111h 1000 0001 0001 0001 



 33 

cwd          ; replicate the high bit into DX  1111111….. 
   xor  ax, dx  ; take 1's complement if negative; no change if positive 7EEEh 
   sub  ax, dx  ; AX is 2's complement if it was negative The standard  7EEFh 
 
mov bx,8111h 
   and   bx, bx  ; see if number is negative 
   jns  notneg  ; if it is negative...  jump not sign  
   neg  bx      ; ...absolute value or make it positive if SF=1 
notneg:         ; jump to here if positive 
 
 

VII. Shift instructions 
SHL/SAL opr, cnt  ;Logic/arithmetic shift left  

 
SHR opr, cnt  ;Logic shift right, put zero(s) in MSB(s) 

 
SAR opr,cnt ; Arithmetic shift right, copy old MSB into new MSB 

 
Influence all flags except AF 

 
Rotate instructions 
ROL  opr, cnt  ;Rotate bits of byte or word left, MSB to LSB and to CF 

 
 
ROR opr, cnt  ;Rotate bits of byte or word right, LSB to MSB and to CF 

 
 
RCL opr, cnt  ;Rotate bits of byte or word left, MSB to CF and CF to LSB 

 
RCR opr, cnt ;Rotate bits of byte or word right, LSB to CF and CF to MSB 
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Influence only CF and OF. In all cases in 1-bit shift OF=1 if the MSB is changed 
and  OF=0 otherwise.  
Cnt can be 1, variable that is equal to 1 or register CL with any value. 
 
We can multiply or divide numbers with logic (for unsigned numbers) and with 
arithmetic (for signed numbers) shifts. 
6*2         00000110*10 =00001100 
-6/2         11111010*10= 11111101 (-3) 
 
VIII. String instructions 

A string is a series of bytes or a series of words in sequential memory locations. A 
string often consists of ASCII character codes. A ”B” in a mnemonic is used to 
specifically indicate that a string of bytes is to be acted upon. A ”W” in the mnemonic is 
used to indicate that a string of words is to be acted upon. 
MOVS/MOVSB/MOVSW  
Copy byte /word from DS:[SI] to ES:[DI]. Update SI and DI. 
          ES:[DI] = DS:[SI] 

• if DF = 0 then  
o SI = SI + 1 (2) 
o DI = DI + 1 (2) 

else  
o SI = SI - 1 (2) 
o DI = DI - 1 (2) 

CMPS/CMPSB/CMPSW  
Compare bytes/words: ES:[DI] and DS:[SI].  
         DS:[SI] - ES:[DI] 

• set flags according to result: 
OF, SF, ZF, AF, PF, CF 

• if DF = 0 then  
o SI = SI + 1 (2) 
o DI = DI + 1 (2) 

else  
o SI = SI - 1 (2) 
o DI = DI - 1 (2) 

SCAS/SCASB/SCASW    
Compare bytes/words: AL/AX and ES:[DI].  
ES:[DI] – AL/AX 
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• set flags according to result: 
OF, SF, ZF, AF, PF, CF 

• if DF = 0 then  
o DI = DI + 1 (2) 

else  
o DI = DI - 1 (2) 

LODS/LODSB/LODSW   
Load byte from DS:[SI] into AL or string word into AX. Update SI. 
AL/AX = DS:[SI] 

• if DF = 0 then  
o SI = SI + 1 (2) 

else  
o SI = SI - 1 (2) 

STOS/STOSB/STOSW       
Store byte from or word from AL/ AX into ES:[DI]. Update DI. 
         ES:[DI] = AL/AX 

• if DF = 0 then  
o DI = DI + 1(2)  

else  
o DI = DI - 1 (2) 

XLATB 
Translate byte from table. 
Copy value of memory byte at DS:[BX + unsigned AL] to AL register.  
Algorithm: 
AL = DS:[BX + unsigned AL]  
 
Example: 
ORG 100h 
x DB 11h, 22h, 33h, 44h, 55h 
LEA BX, x 
MOV AL, 2 
XLATB     ; AL = 33h 
RET 
REP chain instruction 
Repeat following MOVSB, MOVSW, LODSB, LODSW, STOSB, STOSW instructions 
CX times.  
Algorithm: 
check_cx:  if CX <> 0 then  

• do following chain instruction  
• CX = CX - 1  
• go back to check_cx  
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else  
• exit from REP cycle  

  REPE/REPZ  
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 1 (result 
is Equal/Zero), maximum CX times.  
Algorithm: 
check_cx: if CX <> 0 then  

• do following chain instruction  
• CX = CX - 1  
• if ZF = 1 then:  

o go back to check_cx  
else  

o exit from REPE/REPZ cycle  
 else  

• exit from REPE/REPZ cycle  
REPNE/REPNZ  
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 0 (result 
is Not Equal/Not Zero), maximum CX times.  
Algorithm: 
check_cx:  if CX <> 0 then  

• do following chain instruction  
• CX = CX - 1  
• if ZF = 0 then:  

o go back to check_cx  
else  

o exit from REPNE/REPNZ cycle  
else  

• exit from REPNE/REPNZ cycle  

3.8. PROCEDURES 

The basic mechanism for declaring a procedure is:  
procname        proc    {NEAR or FAR} 
            <statements> 
procname        endp 
A simple procedure may consist of nothing more than a sequence of instructions ending 
with a ret instruction. For example, the following “procedure” zeros out the 256 bytes 
starting at the address in the bx register: 
ZeroBytes proc 
                  xor ax, ax 
                  mov cx, 128 
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ZeroLoop: mov [bx], ax 
                  add bx, 2 
                  loop ZeroLoop 
                  ret 
ZeroBytes endp 
 
CALL and RETn Operations 

The 80x86 supports near and far subroutines. Near calls and returns transfer 
control between procedures in the same code segment. Far calls and returns pass control 
between different segments. The two calling and return mechanisms push and pop 
different return addresses. 

The CALL  instructions provides for the transfer of control to a called procedure.  
The RET returns control back to the calling procedure.  

The assembler can tell from the procedure whether RET is near or far and generates the 
appropriate object code or it can be explicitly denoted by using RETN or RETF.  

Near Call and Return  

When a near procedure is called:  
1. The IP is pushed onto the stack.  
2. The IP is loaded with the address of the called procedure.  
3. Upon executing the return the IP is popped off the stack.  
 
CALL  
 (SP) ← (SP) – 2 
 SS: ((SP) + 1:(SP)) ← (IP) 
RET 
 (IP) ← SS: ((SP) + 1:(SP))  
 (SP) ← (SP) + 2 
 [(SP) ← (SP) + n] 

Far Call and Return  

1. The CS and IP are pushed onto the stack.  
2. The IP and CS of the procedure are placed in the IP and CS registers.  
3. Upon executing the return the IP and CS are popped off the stack.  
 
CALL 
 (SP) ← (SP) – 2 
 SS: ((SP) + 1:(SP)) ← (CP) 
 (SP) c (SP) – 2 
 SS: ((SP) + 1:(SP)) ← (IP) 
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RET 
     (IP) ← SS: ((SP) + 1:(SP))  
 (SP) ← (SP) + 2 
 (CP) ← SS: ((SP) + 1:(SP))  
 (SP) ← (SP) + 2 
 [(SP) ← (SP) + n] 
 

3.9. Interrupts  
  The 8086/88 microprocessors allow normal program execution to be interrupted 
by external signals or by special instructions embedded in the program code. When the 
microprocessor is interrupted, it stops executing the current program and calls a 
procedure which services the interrupt. At the end of the interrupt service routine 
(ISR), the code execution sequence is returned to the original, interrupted program.  

Interrupt sources: 
Hardware interrupts (external) generated by an external device request service 

1. mascable - (INTR).  
2. non-maskable interrupt  - (NMI)  

    Software interrupts:  
1. Generated by specific instruction INT  or INTO; 
2. Generated when special conditions at the microprocessor level appear 

– internal interrupts or traps (divide error, single step). 
Each interrupt has a number called the interrupt type or interrupt vector. 
Interrupt numbers are always in the rate 0 to 255 decimal (00H to FFH). Some 

interrupt numbers are fixed by the 8088/8086 hardware, others are chosen by the 
designer. 

Dedicated (predefined) interrupts: 
INT 0  - divide error (generated by CPU after execution of DIV and IDIV 

instructions if the quotient is too large); 
INT 1 - single step (if TF=1 this interrupt occurs after each instruction and allows 

program debugging); 
INT 2  - NMI  (external non-maskable interrupt. Is the only interrupt which is not 

disabled by the CLI instruction. It is designed to handle catastrophic problems such as a 
power failure in order to save data before all is lost); 

INT 3  - breakpoint (A break point is used to examine the CPU and memory after 
the execution of a group of Instructions); 

INT 4 – signed number overflow.  
When an interrupt occurs, the location to which execution jumps is given in the 

interrupt vector table. 
Each entry in the table is 4 bytes long - 2 bytes for a new CS value and 2 bytes for 

a new IP value. 
There are 256 entries in the table, one for each interrupt number. 
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The table resides at physical memory addresses 00000H through 003FFH (1 KB 
of table). 

As the address of each memory byte is defined by initial segment address (2 
bytes) and offset (2 bytes), the interrupt vector has 4 bytes. The interrupt vector contains 
the address of the first instruction of the ISR. CPU calculates the location of the interrupt 
vector by multiplying by four the interrupt type.  

1 byte  2 byte 3 byte 4 byte 
Offset (to be written in IP) Segment (to be written in CS) 

 The structure of interrupt vector. 

 Interrupt vector table: 

 
INT 0- INT 4 – dedicated 
INT 5 - INT 31 are reserved by INTEL (27); 
INT 32 - INT 255 depend on users (224).  
Interrupts have priority: interrupts with lower interrupt numbers have higher 

priority. An interrupt with higher priority can interrupt an interrupt with lower priority.  
Interrupt routine 
  When an interrupt occurs, the processor  

• stores FLAGS register, current IP and CS values into stack,  
• disables further interrupts, (IF) <—— О (TF) <—— О  
• fetches from the bus one byte representing interrupt number, 
• jumps to ISR,  address of which is stored in location  

       4 * <interrupt type>.    (CS) <—— (n * 4 + 2), (IP) <—— (n * 4)  
ISR should return with the IRET instruction.  
The IRET instruction: Restore CS, IP and FLAGS register  from stack. 

Interrupts 
•Initiated by both software 
and hardware 
•Can handle anticipated 
and unanticipated internal 
as well as external events 
•ISRs or interrupt handlers 
are memory resident 
•Use numbers to identify 
an interrupt service 
•FLAGS register is 
saved automatically 

Procedures 
•Can only be initiated by 
software 
•Can handle anticipated 
events that are coded into 
the program 
•Typically loaded along 
with the program 
•Use meaningful names to 
indicate their function 
•Do not save the FLAGS register 
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Software interrupts 
 
Software interrupts can be used to call commonly used procedures from many 

different programs.  
BIOS procedures. 
The ROM BIOS (Basic Input Output System) is part of the ROM based control -

system of an IBM PC or compatible that both defines the architecture of the computer 
to the software, and provides the fundamental I/O services that are needed for the 
operation of the computer.  

The BIOS is actually a collection of procedures. Each procedure performs a 
specific function such as reading a character from the keyboard, writing characters to the 
screen, or reading information from disk.  

System I/O procedures are called with the INT instruction.  
There are twelve BIOS interrupts at all, falling into five groups. For example with INT 
10h you can access the video display services. This interrupt includes 20 subroutines. 
Obviously, one of the INT 10h parameters is a data value indicating which one of the 
twenty subroutines is required. In this case, the AH Register is loaded with the number 
of the subroutine. In addition, the AL, BX, CX and DX registers are used to provide the 
parameters for this subroutine.  
Example: INT 10h / AH = 0 - set video mode. 

input: 
AL = desired video mode. 

these video modes are supported: 
00h - text mode. 40x25. 16 colours. 8 pages. 

03h - text mode. 80x25. 16 colours. 8 pages. 
13h - graphical mode. 40x25. 256 colors. 320x200 pixels. 1 page.  

  
INT 10h / AH = 2 - set cursor position. 

input: 
DH = row. 

DL = column. 
BH = page number (0..7). 
 
 mov dh, 10 
 mov dl, 20 
 mov bh, 0 
 mov ah, 2 
 int 10h 
INT 10h / AH = 0Ch - change colour for a single pixel. 

input: 

AL = pixel colour 

CX = column. 
DX = row. 
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 mov al, 13h 
 mov ah, 0 
 int 10h     ; set graphics video mode.  
 mov al, 1100b 
 mov cx, 30 
 mov dx, 50 
 mov ah, 0ch 
 int 10h     ; set pixel. 
 
DOS interrupts 
 
There are nine DOS interrupt services.  
           Dec                         Hex                    Description          
 
            32                         20              Program terminate: come to normal ending  
            33                         21              Function-call umbrella interrupt                   
            34                         22              Terminate address           
            35                         23              Break address               
            36                         24              Critical error-handler  address    
            37                         25              Absolute disk read          
            38                         26              Absolute disk write         
            39                         27              Terminate-but-stay-resident       
            47                         2F              Print spool control   (DOS-3 versions only)       
    
 
INT 20h "Program Terminate"  

This interrupt terminates the current process and returns control back to the parent 
process. For example, if you run a com.file program, INT 20 terminates your program 
and returns to DOS.  
INT 21h 

All  of the DOS function calls are invoked by INT 21h. Individual functions are 
selected in the same way as BIOS functions, placing the function number in the AH-
Register.  
 

INT 21h / AH=5 - output character to printer. 
entry: DL = character to print, after execution AL = DL.  
          mov ah, 5 
 mov dl, 'a' 
 int 21h 
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INT 21h / AH=9 - output of a string at DS:DX. String must be terminated by 

'$'. 
  mov dx, offset msg 
  mov ah, 9 
  int 21h 
  ret 
  msg db "hello world $" 
 

 
4. Control Unit 

4.1. Control Unit basics 
 
 The main function of a computer is to execute programs. The execution of a 
program consists of a sequential execution of instructions. Each instruction is executed 
during an instruction cycle made up of shorter subcycles (fetch, execute, interrupt). The 
performance of each subcycle involves one or more shorter operations, that is, micro-
operations. Micro-operations are functional or atomic operations of a processor – a 
transfer between registers, a transfer between registers and external bus, a simple 
arithmetic or logic operation (shift, add, negate).  

The control unit is the main component that directs the system operations by 
sending control signals to the data path. These signals control the flow of data within the 
CPU and between the CPU and external units such as memory and I/O. 

The control unit performs two basic tasks: 
1. Sequencing – the control unit causes the processor to step through a 

series of micro-operations in the proper sequence, based on the 
program being executed 

2. Execution – The control unit causes each micro-operation to be 
performed. 

A general model of a control Unit: 

Flags

Clock

Instruction
register

Control signals
within CPU

Control signals from
system bus

Control signals to
system bus

System Bus

Control
Unit
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Inputs: 
1. Clock – One or several micro-operations are executed at one clock pulse. It is 

called a processor cycle. 
2. Instruction register – The opcode of the current instruction is used to determine 

which micro-operations to perform. 
3. Flags – Are needed to determine the status of the processor and outcome of 

previous ALU operations. 
4. Control signals from Control Bus – interrupt signals, acknowledgments. 

Outputs: 
1. Control signals within the CPU – These are two types: those that cause data to be 

moved from one register to another and those that activates specific CPU 
functions. 

2. Control signals to Control Bus – also two types: control signals to memory and 
control signals to I/O system. 

There are mainly two different types of control units: hardwired and 
microprogrammed. 

 
 Hardwired Control Unit 

In hardwired control, fixed logic circuits that correspond directly to the Boolean 
expressions are used to generate the control signals. 

Advantage: Hardwired control is very fast and CU has a small size. 
Disadvantage: Hardwired control could be very expensive and complicated for 

complex systems. It will require a redesign of the entire systems in the case of any 
change (ex. add a new instruction). 

           General structure: 

Instruction register

DC

Timing
generator

Clock

Control signals

Flags

0 1 n

T0

T1

Tm

C1 C2 Ck

Control unit

 
 According to the opcode of the instruction, the CU will generate a different 
combination of control signals. To simplify the CU logic, there should be a unique logic 
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input for each opcode. This function is performed by a decoder which takes an encoded 
input and produces a single output.  

The CU emits different control signals at different time moments (T0, T1…) 
within a single instruction cycle. Timing generator is a counter of a clock pulses. The 
period of the clock pulses must be long enough to allow the propagation of signals along 
data paths and through processor circuitry. At the end of the instruction cycle, the CU 
must reinitialize the counter to T0.   

In a hardwired implementation a CU produces output control signals as a function 
of its input signals.  

Let consider a simple example: Assume that the instruction set of a machine has 
the three instructions: x, y, and z; and A, B, C, D, E, F, G, and H are signals that should 
be generated for the three instructions at the three steps T0 , T1 , and T2. 

 
Step Instruction X Instruction Y Instruction Z 
T0 D,B,E F,H,G E,H 
T1 C,A.H G D,A,C 
T2 G,C B,C - 

The Boolean expressions for control signals A, B, and C can be obtained as follows: 
A=X*T1+Z*T1=(X+Z)*T1 
B=X*T0+Y*T2 
C=X*T1+ Z*T1+ X*T2+Y*T2=(X+Z)*T1+ (X+Y)*T2 

 
The logic circuits for these control signals: 

Z A

C

B

T1

X

X

X

T0

Y

Y

T2

T2

 
 

4.3. Microprogrammed Control Unit 
 

The idea of microprogrammed control units was introduced by M. V. Wilkes in 
the early 1950s. Microprogramming was motivated by the desire to reduce the 
complexities involved with hardwired control.  

An instruction is implemented using a set of micro-operations. Associated with 
each micro-operation is a set of control lines that must be activated to carry out the 
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corresponding microoperation. The idea of microprogrammed control is to store the 
control signals associated with the implementation of a certain instruction as a 
microprogram in a special memory called a control memory (CM).  

Advantage: It is flexible and could adapt easily to changes in the system design. 
We can easily add new instructions without changing hardware. 

Disadvantage: It is slower than a harwired control unit of comparable technology. 
 Microprogramming is the dominant technique in CISC processors, hardwired CU 
– in RISC processors.  

A microprogram  is written in a microprogramming language and consists of a 
sequence of microinstructions.  

A microinstruction  is a vector of bits, where each bit is a control signal, 
condition code and the address of the next microinstruction. 

Microinstructions can be classified as horizontal or vertical.  
Individual bits in horizontal microinstructions correspond to individual control 

lines. If the control bit is equal to 1 – the control line is turned on, if the bit is equal to 0 
– the control line is leaved of. If the condition code is false – the next instruction in the 
sequence is executed. If the condition is true – the address of the next microinstruction 
to be executed is indicated in the address field. 

Microinstruction
address

Condition code
unconditional

zero
overflow

System Bus
control signals

Internal CPU
control
signals  

Horizontal microinstructions are long and allow maximum parallelism since each 
bit controls a single control line.  

In vertical microinstructions, control lines are coded into specific fields within a 
microinstruction. Decoders are needed to map a field of k bits to 2k possible 
combinations of control lines. Because of the encoding, vertical microinstructions are 
much shorter than horizontal ones. Control lines encoded in the same field cannot be 
activated simultaneously. Therefore, vertical microinstructions allow only limited 
parallelism.  

 
Field A
3 bits

Field B
2 bits

DC 1:8 DC 1:4

A0 A1 A7 B0 B1 B3
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 The control memory contains a program that describes the behavior of the control 
unit. So, the control unit is implemented by executing that program.  

 The CU functions as follows (during one clock pulse): 
1. To execute an instruction, the Sequencing Logic Unit generates a READ 

command to the Control Memory. 
2. The word whose address is specified in the Control Address Register is writes into 

the Control Data Register. 
3. The content of the Control Data Register generates control signals and next 

address information for the Sequencing Logic Unit. 
4.  The Sequencing Logic Unit loads a new address into the Control Address 

Register based on the next address information from the Control Data Register 
and the ALU flags. 

 
Microprogrammed CU structure: 

Instruction Rg

DC

Control address RgSequencing
Logic

Control Data Rg

Control signals
within CPU

Control signals
to System Bus

Next address control

Read

Flags

Clock

DC

CU

Control
memory

 
 
 

5. Memory System 
 

        5.1. Memory hierarchy 
  

Computer memory is organised into a hierarchy. In such a hierarchy, larger and 
slower memories are used to supplement smaller and faster ones. At the highest level 
(closest to the processor) are the processor registers. Next comes one or more levels of 
cache, denoted L1, L2, etc. Then comes main memory. All of these are considered 
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internal to the computer system. The hierarchy continues with auxiliary (external) 
memory – fixed hard disk and one or more levels below that consisting of removable 
media such as optical disks and tape.   

CPU Registers

Cache

Main Memory

Auxiliary Memory
(fixed hard disk,

removable disks and tapes)

Speed
Cost

Latency
Bandwidth

Capacity (megabytes)
 

 
The memory hierarchy can be characterized by a number of parameters:  
1. Access type (sequential, direct, random and associative)  
-  Sequential access. It is used in tape units. Memory is organized into units of 

data, called records. Access must be done in a specific linear sequence. Example: if 
access to location 100 takes 500 ns, and if a consecutive access to location 101 takes 505 
ns, then it is expected that an access to location 300 may take 1500 ns. This is because 
the memory has to cycle through locations 100 to 300, with each location requiring 5 ns. 

 - Direct access. It is used in disk units. Individual blocks have a unique address 
based on physical location. Access is done by direct access of a block and sequential 
searching to reach the final location.  

- Random access. It is used in main memory and some cache systems. Each 
addressable location has a unique address. The time to access a given location is 
constant.  

- Associative access. It is used in some cache memories. It is a random access 
type of memory in which a word is stored and retrieved based on a portion of its content 
rather than its address. The access time is also constant.  

2. Capacity. Is typically expressed in terms of bytes or words (1KB, 1MB, 1GB).  
3. Access time (latency). The time it takes to perform a write or read operation, it 

represents an interval between the request for information and the access to the 
first bit of that information. 

4. Cycle time It consists of the access time plus any additional time required 
before a second access can commence.  
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Access time
Cycle time

Search
time

Transfer
time

Wait time
Time

 
5. Bandwidth (Transfer rate). This is the rate at which data can be transferred 

into or out a memory unit. It is equal to 1/cycle time (words per second) or 
w/cycle time.  

6. Cost (is usually specified in money per megabytes).  
 

Memory hierarchy parameters 

 
 A variety of physical types of memory have been employed. The most common 
today are semiconductor memory, magnetic, used for disk and tape, and optical and 
magneto-optical. 
 According to physical characteristics memory can be: 

1. Volatile – information is lost when electrical power is switched off (RAM). 
2. Non-volatile – information once recorded remains without deterioration until it 

is changed (ROM). 
 
The effectiveness of a memory hierarchy during a program execution depends on 

the principle called locality of reference, that is, within a given period of time, programs 
tend to reference a relatively confined area of memory repeatedly. So, according to this 
principle, the most frequently used information is temporarily moved into the faster 
memory.  

There exist two forms of locality: spatial and temporal locality.  
Spatial locality refers to the phenomenon that when a given address has been 

referenced, it is most likely that addresses near it will be referenced within a short period 
of time, for example, consecutive instructions in a straight-line program.  
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Temporal locality, on the other hand, refers to the phenomenon that once a 
particular memory item has been referenced, it is most likely that it will be referenced 
next, for example, an instruction in a program loop. 

The sequence of events that takes place when the processor makes a request for an 
item is as follows. First, the item is sought in the first memory level of the memory 
hierarchy. The probability of finding the requested item in the first level is called the hit 
ratio. The probability of not finding (missing) the requested item in the first level of the 
memory hierarchy is called the miss ratio. When the requested item causes a “miss,” it 
is sought in the next subsequent memory level.  

5.2. Semiconductor memory types 

The main memory of a computer system should be fast enough to not degrade the 
performance of the system. To achieve this, the semiconductor type memories are used 
as main memory.  

• read-only memory -ROM  
• read-write memory or random access memory - RAM  

Among them ROM is a non-volatile memory type. I.e. they retain their contents 
when the power goes off. On the other hand, RAM type devices loss their contents when 
the power goes off, because of the technology used. 

ROM memory  
In ROM, the data are permanently stored. They are available in many forms.  
• ROM. Its content cannot be erasable.  
• PROM (Programmable read only memory. Once programmed, they cannot be 

erased.  
• EPROM (erasable programmable ROM). Erasable by ultraviolet lights.  
• EEPROM (byte-level electrically erasable programmable ROM ). 
• Flash memory (block-level electrically erasable programmable ROM ).  

RAM memory 
• static random access memory (SRAM)  
• dynamic random access memory (DRAM)  

In a SRAM binary values are stored using traditional flip-flops (6 transistors 
configuration).   

A DRAM is made with cells that store data as charge on capacitors. Dynamic 
memory depends on storing logic values using a capacitor together with one transistor 
that acts as a switch. The use of dynamic memory leads to saving in chip area. The 
presence or absence of charge on a capacitor is interpreted as a binary 1 or 0. Because 
capacitors have a natural tendency to discharge, DRAMs require periodic charge 
refreshing by a special circuit.   
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SRAM and DRAM are both volatile: power must be continuously supplied to the 
memory. DRAM cell is smaller than SRAM cell. Thus, a DRAM is denser and less 
expensive, but it requires the supporting refresh circuitry. Thus, DRAMs are used in 
large memory requirements. SRAMs are generally faster than DRAMs. They are used 
and in cache memories.  
 

5.3. Memory chip organization 
A typical pin configuration of a memory chip contains n address input lines to 

select 2n rows, k output (data) lines, and control lines.  
Each memory device has at least one chip select (CS) or chip enable (CE ) or 

select ( S ) pin that enables the memory device. This enables read and/or write 
operations. If more than one is present, then all must be 0 in order to perform a read or 
write. 

Each memory device has at least one control pin. For ROMs, an output enable  
(OE ) or gate ( G ) is present. The OE  pin enables and disables a set of 3-state buffers.  
For RAMs, a read-write ( R / W ) or write enable (WE ) and read enable (OE ) are 
present. For dual control pin devices, it must be hold true that both are not 0 at the same 
time. 

 
A conceptual internal organization of a SRAM chip:  

A0
A1

An-1

W0

W1

W2n-1

Data lines

DC

OE

CS

WE

Control
circuit

 
If one decoder is used, the organization is called one-dimensional. 
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Cells belonging to a given row can be assumed to form the bits of a given memory 
word. Address lines An-1, An-2, …,A1, A0 are used as inputs to the address decoder in 
order to generate the word select lines W2

n
-1, W2

n
-2, …, W1, W0. A given word select line 

is common to all memory cells in the same row. At any given time, the address decoder 
activates only one word select line. A word select line is used to enable all cells in a row 
for read or write. Data (bit) lines are used to input or output the contents of cells.  

 
 Example: A 1Kx4 memory chip indicates that the chip has 1K rows of cells and in 
each row there are 4 cells. The total number of cells is 4K. To address 1K=210 rows, 
log22

10=10 addresses are needed. However, this may not lead to the best utilization of 
the chip area. 

 
Another possible organization of this memory cell array is as a 64x64, that is, to 

organize the array in the form of 64 rows, each consisting of 64 cells. In this case, six 
address lines (forming what is called the row address) will be needed in order to select 
one of the 64 rows. The remaining four address lines (called the column address) will be 
used to select the appropriate 4 bits among the available 64 bits constituting a row. For 
this four 16-to-1 MUX are used. 
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Memory subsystems  
 

An important factor in the design of the main memory subsystem is the required 
number of memory chips. The available per chip memory capacity can be a limiting 
factor in designing memory subsystems. 

Consider, for example, the design of a 16 KB main memory subsystem using 
4Kx4 memory chips. The number of required chips is:   

16 8
8

4 4

K

K
× =   

It should be noted that the number of address lines needed to a memory subsystem 
depends on the number of data lines.  

1) If the width of the data bus is 8, the number of address lines required for the 16 
KB system is 14 (16KB=24*210=214).  

2) If the width of the data bus is 16, the number of address lines required for the 
16 KB=8 KW system is 13 (8 KW=23*210=213).  

In the first case, the memory subsystem can be arranged in 4 rows, each having 
two chips. The least significant 12 address lines A0-A11 are used to address each 
memory chip, which has 12 address lines. The high-order two address lines A12-A13 
are used as inputs to a 2-4 decoder in order to generate 4 enable lines, each is connected 
to the CE line of the two chips constituting a row. Also, to each memory chip a control 
signal /R W  (for memory read and memory write operations) is connected. 

DC

A0-A11

D3-D0D4-D7

A12
A13

01

23

45

67

/R W

 
In the second case, the memory subsystem can be arranged in 2 rows, each having 

four chips. The least significant 12 address lines A0-A11 are used to address each 
memory chip. The high-order address line A12 is used as input to a 1-2 decoder in order 
to generate 2 enable lines, each is connected to the CE line of the four chips constituting 
a row.  
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Cache memory 

Cache memory is a small high-speed memory, situated between the processor and 
the main memory in which the information expected to be used more frequently by the 
CPU is kept (the term cache means a safe place for hiding or storing things). 

CPU Cache Main
Memory

Word
transfer

Block
transfer

 
The structure of a cache-memory system 
So, at any given time some active portion of the main memory is duplicated in the 

cache. Therefore, when the processor makes a request for a memory reference, the 
request is first sought in the cache. If the request corresponds to an element that is 
currently residing in the cache, we call that a cache hit. If the request corresponds to an 
element that is not currently in the cache, we call that a cache miss. After a cache miss, 
a block of elements is brought from the main memory to cache. Because of the 
phenomenon of locality of reference, we can expect that the next requested element will 
be residing in the neighboring locality of the current requested element.  

A request for accessing a memory element is made by the processor through 
issuing the logic address of the requested element. It may correspond to that of an 
element that exists currently in the cache (cache hit); otherwise, it may correspond to an 
element that is currently residing in the main memory. Therefore, address translation has 
to be made in order to determine where the requested element is. This is one of the 
functions performed by the memory management unit (MMU).  
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The system address represents the address issued by the processor for the 

requested element. This address is used by an address translation function inside the 
MMU. If after translation the address is found in the cache, then the element will be 
made available to the processor. If the element is not currently in the cache, then it will 
be brought (as part of a block) from the main memory and placed in the cache  

There are three main different organization techniques used for cache memory.  
1. Direct mapping 
2. Associative Mapping 
3. Set-Associative Mapping.  
These techniques differ in two main aspects: 

-  The criterion used to place, in the cache, an incoming block from the main memory. 
- The criterion used to replace a cache block by an incoming block (on cache full). 

The main memory consists of up to 2n addressable words, with each word having 
a unique n-bit address. For mapping purposes, this memory is considered to consist of a 
number of fixed-length blocks of B words each. That is, there are M=2n/B blocks. Cache 
consists of C lines of B words each and the number of lines is considerably less than the 
number of main memory blocks (C<<M). Because there are more blocks than lines, an 
individual line cannot be uniquely dedicated to a particular block. Thus, each line 
includes a tag (eticheta) that identifies which block is currently being stored. The tag is 
usually a portion of the main memory address.   
 

Direct mapping 
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According to the direct-mapping technique, each block of main memory is 
mapped into only one possible cache block.  

Consider a main memory with M blocks with B words in each. If cache contains 
C lines, then memory is organized as a two-dimensional array with C lines and L 
columns. C*L=M. So, L memory blocks from one line can be mapped in one cache 
block. 

Each main memory address is divided into three fields:  

 
The word field identifies a unique word within a block. It contains b=log2 B bits. 
The cache block field specifies one cache block (line). It contains c= log2 C bits. 
The tag field specifies one block in the main memory line.  It contains l = log2 L bits, 
where L=M/C 
The total number of bits in the main memory address n=log2 (B*M). 

Consider, for example, the case of a main memory consisting of M=4K=212 
blocks, a cache memory consisting of C=128=27 blocks, and a block size of B=16=24 
words (bytes). The main memory size is 212*24=216=64KB. 

The division of the main memory and the cache according to the direct-mapped 
cache technique: Main memory array: 128 x 32.  

 
For example, main memory blocks 0, 128, 256, 384, . . . , 3968 map to cache line 0. 

Word field: b= log2 16 = 4 bits 
Cache Block field c= log2 128 = 7 bits  
Tag field l= log2 L= log2 (M/C) = log2 (2

12/27) = 5 bits 
The total number of bits in the main memory address   
n = log2 (M*B) = log2 (2

12 *24) =16 bits. 
The protocol used by the MMU to satisfy a request made by the processor for 

accessing a given element.  
1. Use the Block field to determine the cache block that should contain the element 
requested by the processor.  



 56 

2. Check the corresponding Tag memory to see whether there is a match between its 
content and that of the Tag field. A match means a cache hit. 
3. Among the elements contained in the cache block, the targeted element can be 
selected using the Word field. 
4. If in step 2, no match is found, then this indicates a cache miss. Therefore, the 
required block has to be brought from the main memory, deposited in the cache, and the 
targeted element is made available to the processor. The cache Tag memory and the 
cache block memory have to be updated accordingly. 

The direct mapping technique is simple and inexpensive to implement. Its main 
disadvantage is that there is a fixed cache location for any given block. Consider, for 
example, the sequence of requests made by the processor for elements held in the main 
memory blocks 1, 9, 17, 25. Consider also that the cache size is 8 blocks. It is clear that 
all the above blocks map to cache block number 1. Therefore, these blocks will compete 
for the same cache block despite the fact that the remaining 7 cache blocks are not used. 

Tag

Tag Data

Cache Main memoryMemory address

Cache block Word

Compare

HitMiss

Word

Block

 
 

Associative Mapping 
According to this technique, an incoming main memory block can be placed in 

any available cache block.  
Therefore, the address issued by the processor need only have two fields. These 

are the Tag and Word fields.  

 
The first uniquely identifies the block while residing in the cache. 
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The second field identifies the element within the block that is requested by the 
processor. 

To determine whether a block is in the cache, the cache control logic must 
examine every block’s tag in parallel. Note that no field in the address corresponds to 
cache block number, so that the number of block in the cache is not determined by the 
address format.   

The length, in bits, of each of the fields: 
1. Word field b= log2 B, where B is the size of the block in words. 
2. Tag field m= log2 M, where M is the size of the main memory in blocks. 
3. The number of bits in the main memory address n= log2 (B * M) 

Let’s compute these parameters for a memory system having the following 
specification: size of the main memory is 4K blocks, size of the cache is 128 blocks, and 
the block size is 16 words.  
Word field b= log2 B = log2 16= log2 2

4 = 4 bits 
Tag field m = log2 M = log2 4K= log2 2

12 = 12 bits 
The number of bits in the main memory address n=log2(B * M)=log2(2

4 * 212) = 16 bits. 
 

The protocol used by the MMU to satisfy a request made by the processor for 
accessing a given element.  
1. Use the Tag field to search in the Tag memory for a match with any of the tags stored. 
2. A match in the tag memory indicates a cache hit. 
3. Among the elements contained in the cache block, the targeted element can be 
selected using the Word field. 
4. If in step 2, no match is found, then this indicates a cache miss. Therefore, the 
required block has to be brought from the main memory, deposited in the first available 
cache block, and the targeted element (word) is made available to the processor. The 
cache Tag memory and the cache block memory have to be updated accordingly. 
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The main advantage of the associative-mapping technique is the efficient use of 
the cache.  Any unoccupied cache block can potentially be used to receive those 
incoming main memory blocks.  

The main disadvantage of the technique, however, is the hardware overhead 
required to perform the associative (parallel) search conducted in order to find a match 
between the tag field and the tag memory. 
 

Set-Associative Mapping 
A set-associative mapping is a compromise between direct and associative 

mapping. According to set-associative mapping technique, the cache is divided into a 
number of sets. An incoming block maps to any block in the assigned cache set. 
Therefore, the address issued by the processor is divided into three distinct fields. These 
are the Tag, Set, and Word fields.  

The Set field is used to uniquely identify the specific cache set that ideally should 
hold the targeted block. The Tag field uniquely identifies the targeted block within the 
determined set. The Word field identifies the element (word) within the block that is 
requested by the processor.  

 
The length, in bits, of each of the fields is given by: 

 
1. Word field b= log2 B, where B is the size of the block in words. 
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2. Set field s= log2 S, where S is the number of sets in the cache. 
3. Tag field m= log2 (M/S), where M is the size of the main memory in blocks. 
S = C/Bs, where C is the number of cache blocks and Bs is the number of blocks per set. 
4. The number of bits in the main memory address n = log2 (B * M). 
 
Example. Compute the above three parameters (Word, Set, and Tag) for a memory 
system having the following specification: size of the main memory M is 4K blocks, 
size of the cache C is 128 blocks, and the block size B is 16 words. One cache set Bs has 
four blocks. 
Word field b= log2 B = log2 16= log2 2

4 = 4 bits 
Set field s=log2 (128/4) = log2 32 = 5 
Tag field m = log2 (M/S) = log2 2

12/25= log2 2
7= 7 bits 

The number of bits in the main memory address n=log2(B * M)=log2(2
4 * 212) = 16 bits. 

 
The protocol used by the MMU to satisfy a request made by the processor for 

accessing a given element.  
1. Use the Set field (5 bits) to determine (directly) the specified set (1 of the 32 sets). 
2. Use the Tag field to find a match with any of the (four) blocks in the determined set. 
A match in the tag memory indicates that the specified set determined in step 1 is 
currently holding the targeted block, that is, a cache hit. 
3. Among the 16 words (elements) contained in hit cache block, the requested word is 
selected using a selector with the help of the Word field. 
4. If in step 2, no match is found, then this indicates a cache miss. Therefore, the 
required block has to be brought from the main memory. 
 

Replacement Techniques and Write Policies 
 

 When a new block is brought into the cache, one of the existing blocks must be 
replaced. For direct mapping, there is only one possible line for any particular block and 
no choice is possible. For the associative and set-associative techniques, a replacement 
algorithm is needed.  

A number of replacement techniques can be used: 
1.  A randomly selected block (random selection).  As the name indicates, 

random selection of a cache block for replacement is done based on the output of the 
random number generator at the time of replacement. This technique is simple and does 
not require much additional overhead. However, its main shortcoming is that it does not 
take locality into consideration. 

2. The block that has been in the cache the longest ( first-in, first- out, FIFO).  
This technique requires keeping track of the lifetime of a cache block. Therefore, it is 
not as simple as the random selection technique. Intuitively, the FIFO technique is 
reasonable to use for straight-line programs where locality of reference is not of concern. 
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3. The block that has been used the least while residing in the cache (least 
recently used, LRU).The LRU technique is the most effective. This is because the 
history of block usage (as the criterion for replacement) is taken into consideration. The 
LRU algorithm requires the use of a cache controller circuit that keeps track of 
references to all blocks while residing in the cache. This can be achieved using counters. 
In this case each cache block is assigned a counter. Upon a cache hit, the counter of the 
corresponding block is set to 0, all other counters having a smaller value than the 
original value in the counter of the hit block are incremented by 1, and all counters 
having a larger value are kept unchanged. Upon a cache miss, the block whose counter 
is showing the maximum value is chosen for replacement, the counter is set to 0, and all 
other counters are incremented by 1. 
Cache Write Policies 

There are essentially two possible write policies upon a cache hit. These are the 
write-through  and the write-back.  

In the write-through policy, every write operation to the cache is repeated to the 
main memory at the same time.  

In the write-back policy, all writes are made to the cache.  
A write to the main memory is postponed (amanata) until a replacement is needed. 

Every cache block is assigned a bit, called the dirty bit, to indicate that at least one write 
operation has been made to the block while residing in the cache. At replacement time, 
the dirty bit is checked; if it is set, then the block is written back to the main memory, 
otherwise, it is simply overwritten by the incoming block.  

The write-through policy maintains coherence between the cache blocks and their 
counterparts in the main memory at the expense of the extra time needed to write to the 
main memory. This leads to an increase in the average access time. On the other hand, 
the write-back policy eliminates the increase in the average access time. However, 
coherence is only guaranteed at the time of replacement. 
 

Virtual memory 
 

A virtual memory system attempts to optimize the use of the main memory (the 
higher speed portion) with the hard disk (the lower speed portion). In effect, virtual 
memory is a technique for using the secondary storage to extend the apparent limited 
size of the physical memory. It is usually the case that the available physical memory 
space will not be enough to host all the parts of a given active program.  

The principles employed in the virtual memory design are the same as those 
employed in the cache memory. The most relevant principle is that of keeping active 
segments in the high-speed main memory and moving inactive segments back to the 
hard disk. 

The address issued by the processor in order to access a given word does not 
correspond to the physical memory space. Therefore, such address is called a virtual 
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(logical) address. The memory management unit (MMU) is responsible for the 
translation of virtual addresses to their corresponding physical addresses.  

Three address translation techniques can be identified. These are: 
- direct-mapping; 
 - associative- mapping;  
- set-associative-mapping.  
The logical addresses can be organized in three modes: 
- fixed length pages (from 2K to 16K bytes); 
- variable length segments (<64KB); 
- paged segmentation (one segment contains a few pages). 
In all these techniques, the translation from logical address to physical is done 

using a translation table, stored in the main memory. 
 

Address translation using pages 
 
 Direct-mapping 

In this case, the virtual address issued by the processor is divided into two fields: 
the virtual page number and the offset fields. If the number of bits in the virtual page 
number field is N, then the number of entries in the page table will be 2N. 

The virtual page number field is used to directly address an entry in the page 
table. If the corresponding page is valid (as indicated by the valid bit), then the contents 
of the specified page table entry will correspond to the physical page address in the main 
memory. The latter is then extracted and concatenated with the offset field in order to 
form the physical address of the word requested by the processor. If, on the other hand, 
the specified entry in the page table does not contain a valid physical page number, then 
this represents a page fault. In this case, the MMU will have to bring the corresponding 
page from the hard disk, load it into the main memory, and indicate the validity of the 
page.  

Example. Suppose that the virtual address contains 16 bits. One page has 212 
words. Four most significant bits will specify one of 16 pages and last 12 bits – the word 
address in the page.  
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The main advantage of the direct-mapping technique is its simplicity measured in 

terms of the direct addressing of the page table entries. Its main disadvantage is the 
expected large size of the page table and a lot of empty entries in it. 
 
Associative Mapping 

The virtual address issued by the processor is divided into two fields: the virtual 
page number and the offset fields. However, the page table could be far shorter.  

Every entry in the page table is divided into two parts: the virtual page number 
and the physical page number. A match is searched (associatively) between the virtual 
page number field of the address and the virtual page numbers stored in the page table. 
If a match is found, the corresponding physical page number stored in the page table is 
extracted and is concatenated with the offset field in order to generate the physical 
address of the word requested by the processor. 

If a match could not be found, then this represents a page fault. In this case, the 
MMU will have to bring the corresponding page from the hard disk, load it into the main 
memory, and indicate the validity of the page.  
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The main advantage of the associative-mapping technique is the expected shorter 

page table (compared to the direct-mapping technique) required for the translation 
process. Its main disadvantage is the associative search that requires the use of an added 
hardware overhead. 

A possible compromise between the complexity of the associative mapping and 
the simplicity of the direct mapping is the set-associative mapping technique.  
 
Set-Associative Mapping 

In this case, the virtual address issued by the processor is divided into three fields: 
the tag, the index, and the offset. The page table used in set-associative mapping is 
divided into sets, each consisting of a number of entries. Each entry in the page table 
consists of a tag and the corresponding physical page address.  

Similar to direct mapping, the index field is used to directly determine the set in 
which a search should be conducted. If the number of bits in the index field is S, then the 
number of sets in the page table should be 2S. Once the set is determined, then a search 
(similar to associative mapping) is conducted to match the tag field with all entries in 
that specific set. If a match is found, then the corresponding physical page address is 
extracted and concatenated with the offset field in order to generate the physical address 
of the word requested by the processor.  
 
Translation Look-Aside Buffer (TLB) 

In most modern computer systems a copy of a small portion of the page table is 
kept on the processor chip. This portion consists of the page table entries that correspond 
to the most recently accessed pages. This small portion is kept in the translation look-
aside buffer (TLB) cache. A search in the TLB precedes that in the page table. A hit in 
the TLB will result in the generation of the physical address of the word requested by 



 64 

the processor, thus saving the extra main memory access required to access the page 
table. It should be noted that a miss on the TLB is not equivalent to a page fault.  
 

Segment Address Translation  
 

In order to support segmentation, the address issued by the processor should 
consist of a segment number (base) and a displacement (or an offset) within the 
segment. 

Address translation is performed directly via a segment table. The starting address 
of the targeted segment is obtained by adding the segment number to the contents of the 
segment table pointer. One important content of the segment table is the physical 
segment base address. Adding the latter to the offset yields the required physical 
address. 

 
 

Paged Segmentation 
 

Both segmentation and paging are combined in most systems. Each segment is 
divided into a number of equal sized pages. The basic unit of transfer of data between 
the main memory and the disk is the page, that is, at any given time, the main memory 
may consist of pages from various segments. In this case, the virtual address is divided 
into a segment number, a page number, and displacement within the page. Address 
translation is the same as explained above except that the physical segment base address 
obtained from the segment table is now added to the virtual page number in order to 
obtain the appropriate entry in the page table. The output of the page table is the page 
physical address, which when concatenated with the word field of the virtual address 
results in the physical address.  
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Input–Output system 
Basic concepts 

Input–output (I/O) system is the interface to the outside world – external 
(peripheral) devices. Peripheral devices cannot be connected directly to the system bus, 
only through I/O interface circuits – I/O module.  The reasons are: 

1. There are a wide variety of peripherals with various methods of operation; 
2. The data transfer rate is very different (the data transfer rate of a keyboard is 

about 10 characters (bytes)/second, a scanner can send data at a rate of about 200,000 
characters/second, a laser printer can output data at a rate of about 100,000 
characters/second, a graphic display can output data at a rate of about 30,000,000 
characters/second.);   

3. Peripherals often use different data formats and word lengths than the computer 
to which they are attached. 

The functions of an I/O module: 
1. Control and timing to coordinate the flow of traffic between internal resources 

and external devices. 
The control of the transfer of data from the peripheral to the processor: 
- The processor check the status of the device 
- The I/O module returns the status of the device 
- If the device is ready to transmit, the processor requests transfer of data by 

means of a command to the I/O module 
- The I/O module obtains a unit of data (8 or 16 bits) from the device 
- The data are transferred from the I/O module to the processor. 
2. Communication between the processor and the device. It involves commands 

decoding, status information (common status signals are BUSY and READY), address 
recognition and data exchange. 

3. Data buffering. The transfer rate of the processor and peripheral is different. So 
data are first stored in special input and output registers (ports).   
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Block diagram of an I/O module 
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In a typical computer system, there is a number of input or output registers (ports), 
each belonging to a specific input or output device.  

There are two arrangements to address input and output registers. 
1. Shared I/O. I/O devices are assigned particular addresses, isolated from the 

address space assigned to the memory.  
The main advantage of the shared I/O arrangement is the separation between the 

memory address space and that of the I/O devices. Its main disadvantage is the need to 
have special input and output instructions in the processor instruction set. The shared I/O 
arrangement is mostly adopted by Intel. 

2. Memory-mapped I/O. Input and output registers are addressed as memory 
locations. 

The main advantage of the memory-mapped I/O is the use of the read and write 
instructions of the processor to perform the input and output operations, respectively. It 
eliminates the need for introducing special I/O instructions. The main disadvantage  - is 
the need to reserve a certain part of the memory address space for addressing I/O 
devices, that is, a reduction in the available memory address space. The memory-
mapped I/O has been mostly adopted by Motorola. 

 
I/O techniques of data transfer 

 
 There are three principal I/O techniques of data transfer: 

- programmed I/O, in which I/O data transfer occurs under the control of the CPU 
program; 

- interrupt driven I/O, in which I/O data transfer is controlled by CPU after the 
external interrupt request that initiates the transfer;   

- direct memory access (DMA), in which a specialized I/O controller takes over the 
control of an I/O operation to move a large block of data. 
 

Programmed I/O 
 

 I/O data transfer occurs under the control of the CPU program. The program must 
check the device status, send a read or write command and transfer the data. The 
processor must wait until the I/O operation is complete. If the processor is faster than the 
I/O module, this is wasteful of the processor time.  
 The process of checking the status of I/O devices in order to determine their 
readiness for receiving and/or sending characters, is called I/O polling. 

To execute an I/O instruction, the processor issues an address, specifying the 
particular I/O module and external device, and an I/O command.  

There are four types of commands: 
. Control:  Used to activate a peripheral and tell it what to do. 
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. Test: Used to test various status conditions associated with an I/O module and its 
peripherals (if it is powered on, if the I/O operation is completed, if any errors occurred). 

. Read: Causes the I/O module to obtain the word of data from the peripheral and 
place it in an internal buffer – data register and then to the data bus; 

. Write:  Causes the I/O module to take a word of data from the data bus and 
transmit it to the peripheral. 

 A flowchart of reading in a block of data: 
Issue read

command to I/O
module

Read status of
I/O module

CPU -> I/O

I/O -> CPU

Check status
Not ready

 Ready

Read word from
I/O module

Write word into
memory

Done

Next instruction

Yes

No

I/O -> CPU

Error

CPU -> memory

 
 For each word that is read in, the processor must remain in status checking cycle 
until it determines that the word is available in the I/O module’s data register. This 
flowchart highlights the main disadvantage of this technique: it is a time-consuming 
process.  
 

Interrupt-driven I/O 
 

 With interrupt driven I/O, the processor issues an I/O command, continues to 
execute other instructions, and is interrupted by the I/O module when the latter is ready 
to exchange data with the processor.  

I/O module actions. 
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For input, the I/O module receives a READ command from the processor. Then it 
proceeds to read data in from an associated peripheral. Once the data are in the module’s 
data register, the module signals an interrupt to the processor over a control line. The 
module then waits until its data are requested by the processor. When the request is 
made, the module places data on the data bus. 

Processor’s actions. 
The processor issues a READ command and then goes off and executes other 

instructions. At the end of each instruction cycle, the processor checks for interrupts. 
When the interrupt occurs, the processor stores FLAGS register, current IP and CS 
values into stack, disables further interrupts, fetches from the bus one byte representing 
interrupt number, and  jumps to Interrupt Service Routine (ISR). In this case, it reads the 
word of data from the I/O module and stores it in memory. It then restores the content of 
the registers from stack and resumes execution.  

A flowchart of reading in a block of data: 
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 Interrupt-driven I/O is more efficient than programmed I/O because it eliminates 
needless waiting. However, it still consumes a lot of processor time, because every word 
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of data that goes from memory to I/O module or vice-versa must pass through the 
processor. 
 

Bus arbitration in Interrupt-driven I/O 
 
Computers are provided with interrupt hardware capability in the form of 

specialized interrupt lines to the processor. These lines are used to send interrupt signals 
to the processor.  

In the case of I/O, there exists more than one I/O device. The processor should be 
provided with a mechanism that enables it to handle simultaneous interrupt requests and 
to recognize the interrupting device.  

Two basic schemes can be implemented to achieve this task.  
1. daisy chain bus arbitration (DCBA); 
2. independent source bus arbitration (ISBA). 

According to the DCBA, I/O devices present their interrupt requests to the 
interrupt request line INR (similar to the polling arrangement). Upon recognizing the 
arrival of an interrupt request, the processor, through a daisy chained grant line (GL), 
sends its grant to the requesting device to start communication with the processor. The 
GL goes through all devices. If Device #1 has put a request, then it will hold the grant 
signal and start communication with the processor. If, on the other hand, Device #1 has 
no interrupt request, it will pass the grant signal to device #2, which will repeat the same 
procedure, and so on.  

In the case of multiple requests, the DCBA arrangement gives highest priority to 
the device physically nearer to the processor.  

 
 
According to the ISBA, each I/O device has its own interrupt request line, through 

which it can send its interrupt request, independent of the other devices. 
Similarly, each I/O device has its own grant line, through which it receives the 

grant signal for its request such that it can start communicating with the processor.  
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I/O device priority in the ISBA does not depend on the device location. A priority 
arbitration circuitry is needed in order to deal with simultaneous interrupt requests. 

 
 

Direct memory access (DMA) 
 

Programmed I/O and interrupt-driven I/O suffer from two drawbacks: 
1. The I/O transfer rate is limited by the speed with which the processor can test 

and service a device. 
2. The processor must execute a number of instructions for each I/O transfer. 
When large volumes of data are to be moved, a more efficient technique is 

required: direct memory access (DMA).  
DMA involves an additional module on the system bus, the DMA controller. It 

takes over the control of the system from the processor. 

Data register

Data count

Address register

Control logic

Data lines

DMA request
DMA acknowledge

Interrupt
Read

Write

 



 72 

When the processor wishes to read or write a block of data, it issues a command 
to the DMA controller, by sending the following information: 

. If read or write is requested (read or write control lines). 

. The address of the I/O device (data lines). 

. The starting location in memory to read or write (it is stored in address register) 

. The number of words to be read or written (send on data lines and stored in the 
data count register). 

When the transfer is complete, The DMA controller sends an interrupt signal to 
the processor. Thus, the processor is involved only at the beginning and end of the 
transfer.  

Issue read block
command to I/O

module

Read status of
DMA controller

CPU -> DMA

DMA -> CPU

Do something
else

Interrupt  
Direct memory access data transfer can be performed in burst mode or single 

cycle mode.  
In burst mode, the DMA controller keeps control of the bus until all the data has 

been transferred to (from) memory from (to) the peripheral device. This mode of transfer 
is needed for fast devices where data transfer cannot be stopped until the entire transfer 
is done.  

In single-cycle mode (cycle stealing), the DMA controller relinquishes the bus 
after each transfer of one data word. This minimizes the amount of time that the DMA 
controller keeps the CPU from controlling the bus, but it requires that the bus 
request/acknowledge sequence be performed for every single transfer. This overhead 
can result in a degradation of the performance.  

The following steps summarize the DMA operations: 
1. DMA controller initiates data transfer. 
2. Data is moved (increasing the address in memory, and reducing the count of 

words to be moved). 
3. When word count reaches zero, the DMA informs the CPU of the termination 

by means of an interrupt. 
4. The CPU regains access to the memory bus. 
A DMA controller may have multiple channels. Each channel has associated with  

it an address register and a count register. To initiate a data transfer the device driver 
sets up the DMA channel’s address and count registers together with the direction of the 
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data transfer, read or write. While the transfer is taking place, the CPU is free to do other 
things. When the transfer is complete, the CPU is interrupted. 

Direct memory access channels cannot be shared between device drivers. A 
device driver must be able to determine which DMA channel to use. Some devices have 
a fixed DMA channel, while others are more flexible, where the device driver can 
simply pick a free DMA channel to use. 

 
Bus Arbitration in DMA mode 

 
Bus arbitration is needed to resolve conflicts when two or more devices want to 

become the bus master at the same time. In short, arbitration is the process of selecting 
the next bus master from among multiple candidates.  

 
Centralized Arbitration  
In centralized arbitration schemes, a single arbiter is used to select the next 

master. A simple form of centralized arbitration uses a bus request line, a bus grant line, 
and a bus busy line. Each of these lines is shared by potential masters, which are daisy-
chained in a cascade.  

 
 
Each of the potential masters can submit a bus request at any time.    
Instead of using shared request and grant lines, multiple bus request and bus grant 

lines can be used. 
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Decentralized Arbitration  
In decentralized arbitration schemes, priority-based arbitration is usually used in a 

distributed fashion. Each potential master has a unique arbitration number, which is used 
in resolving conflicts when multiple requests are submitted. For example, a conflict can 
always be resolved in favor of the device with the highest arbitration number. The 
question now is how to determine which device has the highest arbitration number? One 
method is that a requesting device would make its unique arbitration number available to 
all other devices. Each device compares that number with its own arbitration number. 
The device with the smaller number is always dismissed. Eventually, the requester with 
the highest arbitration number will survive and be granted bus access. 

 
INPUT–OUTPUT INTERFACES 

 
An interface is a data path between two separate devices in a computer system. 
Interface to buses can be classified based on the number of bits that are 

transmitted at a given time to serial versus parallel ports. In a serial port, only 1 bit of 
data is transferred at a time. Mice and modems are usually connected to serial ports. A 
parallel port allows more than 1 bit of data to be processed at once. Printers are the most 
common peripheral devices connected to parallel ports.  

A summary of the variety of buses and interfaces used in personal computers: 
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Bus/Interface Description 
PS/2 A type of port (or interface) that can be used to connect mice and 

keyboards to the computer. The PS/2 port is sometimes called the 
mouse port. 

Industry standard 
architecture (ISA) 

ISA was originally an 8-bit bus and later expanded to a 16-bit bus 
in 1984. In 1993, Intel and Microsoft introduced a plug and play 
ISA bus that allowed the computer to automatically detect and set 
up computer ISA peripherals such as a modem or sound card. 

Extended industry 
standard 
architecture 
(EISA) 

EISA is an enhanced form of ISA, which allows for 32-bit data 
transfers, while maintaining support for 8- and 16-bit expansion 
boards. However, its bus speed, like ISA, is only 8 MHz. EISA is 
not widely used, due to its high cost and complicated nature. 

Peripheral 
component 
interconnect (PCI) 

PCI was introduced by Intel in 1992, revised in 1993 to version 
2.0, and later revised in 1995 to PCI 2.1. It is a 32-bit bus that is 
also available as a 64-bit bus today. Many modern expansion 
boards are connected to PCI slots. 

Advanced graphic 
port (AGP) 

AGPwas introduced by Intel in 1997. AGP is a 32-bit bus designed 
for the high demands of 3D graphics. AGP has a direct line to 
memory, which allows 3D elements to be stored in the system 
memory instead of the video memory. AGP is geared towards data-
intensive graphics cards, such as 3D accelerators; its design allows 
for data transfer at rates of 266 MB/s. 

Universal serial 
bus 
(USB) 

USB is an external bus developed by Intel, Compaq, DEC, IBM, 
Microsoft, NEC and Northern Telcom. It was released in 1996 with 
the Intel 430HX Triton II Mother Board. USB has the capability of 
transferring 12 Mbps, supporting up to 127 devices. Many devices 
can be connected to USB ports, which support plug and play. 

 
 


