Introduction

A computer consists of a set of physical componéhtsdware) and system
programs (system software) that are responsibledéda processing according to an
algorithm, specified by the user through an appbcaprogram (application software).

Computer systems have conventionally been definemugh their interfaces at a
number of abstraction levels, each providing florai support to its predecessor.
Included among the levels are the application @, the high-level languages, and
the set of machine instructions.

In the past, the terrmomputer architectureoften referred only to instruction set
design that represents an interface between haedamd the lowest level software -
machine instructions (binary coded programs).

A different definition of computer architecturehsilt on four basic viewpoints:

- structure (defines the interconnection of various hardwamam@onents),

- organization (defines the dynamic interplay and managementhefuarious
components),

- implementation(defines the detailed design of hardware compohents

- performance(specifies the behavior of the computer system).

Computer’s generations

First manual calculator — abacus, appears in Chinabout 2600 BC (before
Christ). First mechanical calculator that can add asubtract was invented in 1642 by
the French philosopher Blaise Pascal.

Modern electronic computers are typically groupa ifour "generations." Each
generation is marked by improvements in basic teldgy. Each advance has resulted
in computers of lower cost, higher speed, greatemary capacity, smaller size and
power consumption.

1. First Generation (1945-1954pased orvacuum tubeinvented in 1906 by an
electrical engineer named Lee De Forest. (genemggse computers: ENIAC
(Electronic Numerical Integrator and Computer)-008, vacuum tubes, 30.5 meters, 10-
digit registers for temporary calculations; Colassul,500 vacuum tubes, UNIVAC -
5,000 vacuum tubes). These early machines werealypicontrolled by plug board
wiring.

2. Second Generation (1955-1964)ased ortransistors invented in the mid-
1940s by John Bardeen (1908-1991), William B. Sheycki910-1989), and Walter H.
Brattain (1902—-1987). In this period appears arsl fupercomputers: UNIVAC LARC
- Livermore Atomic Research Computer and IBM 703@med Strech Computer), used
for weather prediction, nuclear research and eidifi intelligence. These second
generation machines were programmed in languagee a8 COBOL (Common

Business Oriented Language) and FORTRAN (Formudadlator). Magnetic disks and
tape were often used for data storage. Appearsoineept of parallel processing.

3. Third Generation (1965-1978)ased onntegrated circuits invented by Jack
Kilby and Robert Noyce. The integrated circuit isiagle device that contains many
transistors. Computers: IBM System/360 - was ablexecute 500,000 additions per
second. This computer was about 263 times as fashea ENIAC. During the third
generation of computers, the central processorcaastructed by using many integrated
circuits. It introduced single computer architeetover a range or family of devices. In
other words, a program designed to run on one madhithe family could also run on
all of the others. IBM spent approximately $5 bitlito develop the System/360.
Appears first minicomputers. The important chanasties of the computers of this
generation: operating systems, multiprogrammingdtipracessing and virtual memory.

4. Fourth Generation (1979-?)based on thenicroprocessors.Microprocessors
used Large Scale Integration (LSI) and Very Largal&Integration (VLSI) techniques
to pack thousands or millions of transistors onngle chip. Advantages: speed, high
integration ratio, high reliability, small costscadimensions.

A common law that governs the world of microprooessis Moore's Law.
Moore's Law states that the numbers of transistora single chip at the same price will
double every 18 to 24 months. Current microprogessops contain millions of
transistors and the number is growing rapidly.

First microprocessor: Intel Company, 14004 — 4 bitganization (built in 1971) was
the first processor to be built on a single siliohip. It contained 2,300 transistors.
First successful microprocessor: Intel I8080 —t8 processor (1972).
First 16 bits processor: Intel 18086 (1978).
First 32 bit processor: Intel 180386 (1985).
Superscalar microprocessor architecture: Pentiton{IF290)
64 bits processors, multi-core architectures: iBembD, Core 2 Duo, Xeon (Intel),
Other microprocessor families:
Motorola: 6800 (8 biti), 68000 (16 biti), 68020,03® (32 biti), 68040,
Zilog: Z80, Z8000
Texas Instruments: - digital signal processdk4S320¢10/20/30/50/80
Microchip: microcontrollers: PIC12/16/18
MIPS (Microprocessor without Interlocked Ripe Stages) , ARMAdvanced RISC
Machine), etc.

Tendencies and perspectives
1. Increase of integration ration - smaller switchiaelgments (transistors): 45-
>35nm, increase of switching elements’ number, @ssors - over 1 billion
transistors, memory — over 64-512 billion;
2. Power reduction - intelligent power distributiatynamic power control: energy
where and when it is needed, frequency limitation;

2

3. Multi-core and multi-thread architectures (fromdes/chip to 128 cores and
more, symmetric and asymmetric architectures (st and Power PC);

4. Network-on-chip - network communication inside thip instead of parallel
buses;

5. Memory hierarchies - more cache memory levelsdenthe processor), virtual
memory, access request anticipation;

6. External memories of silicon - no more hard aogfly disks of DVDs, flash

instead,;

Multi-processor architectures - parallel architeesy distributed architectures;

Computer networks - Internet — an indispensableptaer resource, wireless

networks;

9. Mobile and portable computers: laptops, graphidetab PDA (personal digital
assistant) also known as a palmtop computer, @opal data assistant, is
a mobile device that functions as a personal infdion manager. , GPS (Global
Positioning System), intelligent phones.

0 N

Technological development

Computer technology has shown an unprecedentedofat@provement. This
includes the development of processors and memdrles integration of numbers of
transistors into a single chip has increased frorfeva hundred to millions. This
impressive increase has been made possible by diianees in the fabrication
technology of transistors.

The scale of integration has grown from small-s¢&fel) to medium-scale (MSI),
then to large-scale (LSI), then to very large-scategration (VLSI), and currently to
wafer scale integration (WSI).

Numbers adices per Chip

Integration Technology Typical number of dexc Typical functions
SSI Bipolar 10-2 Gates and flipps
MSI Bipolar & MOS 50-100 Adders & counters
LSI Bipolar & MOS 100-10,000 ROM & RAM
VLSI CMOS (mostly) 10,000-5,000,000 Processors
WSI CMOS 5,00@000 DSP & special purposes

1. Computer components

Virtually, all contemporary computer designs aasdxl on concepts developed by
John von Neumann. Such a design is referred theagan Neumann architecture and is
based on three concepts:

1. Data and instructions are stored in a single redt#@\memory.

2. The contents of this memory are addressable bytitogawvithout regard to the
type of data contained there.
3. Execution occurs in a sequential fashion from oiséruction to the next.

The basidvon Neumannarchitecture:

Computer
S EeﬁtFaTJnE""""T
| Ir ~ cpPu 7| |
\ System Main
ALU \
| Reg] | “%ie }
| [Controlunit__| | | Memory |
\ | | ‘
- |
I/O system
Buffers R
A
v

Peripheral Devices

The structural description of a computer consiste® following three basic blocks:
1. CPU (Central Processing Unit).

2. Main memory.

3. Input/Output system.

CPU consists of Control Unit, ALU (Arithmetic anagic Unit) and registers and
represents a general purpose processor in comigistspecialised processors (/O
processor, arithmetic processor) with a set ofuresions, which means that it recognize
and execute a set of instructions in a binary form.

CPU and main memory formsGentral Unit.

A Central Unit, Input/Output System and a set o$tegn programs forms a
computer.

A computer and peripheral devices formsoanputer system If a microprocessor
Is used, it can be named also amdierocomputer system

Main memory (also named and internal memory) ctsm®$ a set of locations,
defined by sequentially numbered addresses. Eaddiidn contains a binary number
that can be interpreted as either an instructiodata. The internal memory can be of 2
types: ROM (Read Only Memory) and RAM (Random Ascegemory).

I/O system transfers data from external device€RdJ and memory and vice
versa. It contains internal buffers for temporahlyiding these data until they can be
sent on.

Peripheral devices: External memory devi¢kard-disc, floppy-disc, compact-
disc); input devices (keyboard, mouse); output ckeviprinter, monitor).

Data and instructions are communicated with theprder using input devices,
the results are sent to output devices.

CPU interchanges with other components with dataer@nds and results),
instructions, addresses, control signals. The commation is executed through buses.
There are 3 types of buses: Address, Data and @dnises. Al they form the system
bus.

Address bus: carries the address of a uniqgue memory or inpuyildgugl/O)
device.

Data bus carries data stored in memory (or in ld®vice) to the CPU or
from the CPU to the memory (or I/O device)

Control bus: is a collection of control signals that coordinatel synchronize the
whole system

Main I/O
CPU memory system
@ Kh 4 W WY A W
@)) Data Bus
E Address Bus
; Control Bus

2. Central Processing Unit
2.1. CPU basics

A typical CPU has three major components:

(1) register set,

(2) arithmetic logic unit (ALU),

(3) control unit (CU).

The register set differs from one computer architecto another. It is usually a
combination of general-purpose and special purpegisters.

The ALU provides the circuitry needed to perforra #rithmetic, logical and shift
operations demanded of the instruction set. It gloerates information about carry,
overflow and other special cases. It consists ahlioational logic circuits: adders,
decoders, encoders, multiplexers and a set ofteegigex. accumulator), used as a fast
memory in arithmetic and logic operations.

The control unit is the entity responsible for fetq the instruction to be
executed from the main memory and decoding andekeauting it.

The main components of the CPU and its interactisitis the memory system
and the input/output devices:

Memory System
Instructions M l[Data
CPU

|
L 7

ALU .

L]

]
. 1

Control Unit
Registers

|

Input / Output

2.2. The register set

The register set is usually a combination of gdraugprose and special purpose
registers.

General-purpose registers can be used for mulpphkposes and assigned to a
variety of functions by the programmer. Specialgose registers are restricted to only
specific functions.

Examples of gecial purpose registers

Two main registers are involved in fetching anmnstion for execution:

- the program counter (PC) (is the register that contains the address oht
instruction to be fetched). After a successfulringion fetch, the PC is updated to point
to the next instruction to be executed.

-the instruction register (IR) in which the fetched instruction is loaded

Two registers are essential in memory write and mggerations:

- the memory data register (MDR)

- memory address register (MAR).

The MDR and MAR are used exclusively by the CPU and not directly
accessible to programmers.

In order to perform a write operation into a specdifmemory location, the MDR
and MAR are used as follows:

1. The word to be stored into the memory locasdivst loaded by the CPU into MDR.

2. The address of the location into which the weri be stored is loaded by the
CPU into a MAR.

3. A write signal is issued by the CPU.

Similarly, to perform a memory read operation, MBR and MAR are used as
follows:

1. The address of the location from which the vi®td be read is loaded into the MAR.

2. A read signal is issued by the CPU.

3. The required word will be loaded by the memaity the MDR ready for use
by the CPU.

Some architectures contain a spepiagram status word (PSW) registeror a
Flag register. The PSW contains bits that are set by the CPWdmate the current
status of an executing program. These indicatadygnically for arithmetic operations,
interrupts, memory protection information, or preger status.

2.3. Instruction cycle

The basic function performed by a computer is ettesuof a program, which
consists of a set of instructions stored in memadhe CPU reads (fetch) instructions
from memory one at a time and executes each ingtrudrogram execution consists of
repeating the process of instruction fetch and @txac.

The processing required for a single instructiosaled aninstruction cycle. It
consists of two stepdetch cycle and execute cycle.The instruction cycle is the
multiple of the clock signal.

The fetched instruction is loaded into the IR. Trecessor interprets a binary
code of the instruction and executes the requictidra reads and writes data from and
to memory, and transfers data from and to inpuploidevices.

A typical and simple instruction cycle can be sumeeal as follows:

1. Instruction address calculation determine the address of the next instruction
to be executed by adding a fixed number to theesddof the previous instruction in PC.

2. Instruction fetch: Read the instruction from its memory location atare it
into IR.

3. Instruction decoding: analyze instruction to determine type of operatio be
performed and operands to be used.

4. Operands address calculationif needed.

5. Operand fetch: fetch the operand from memory and store it in GBglsters,
if needed.

6. Instruction execution.

7. Results store results are transferred from CPU registers to argmf needed.

The instruction cycle is repeated as long as therenore instructions to execute.

A check for pending interrupts is usually includedthe cycle. Examples of
interrupts include 1/O device request, arithmetieerflow, division by zero, etc.
Interrupts are provided primarily as a way to imy@oprocessing efficiency. For
example, most external devices are much slower ghprocessor. With interrupts; the

7

processor can be engaged in executing other itisingcwhile an 1/O operation is in
progress. .

To accommodate interrupts, an interrupt cycle teddo the instruction cycle. In
the interrupt cycle, the processor checks to semyf interrupts have occurred. If no
interrupts are pending, the processor proceedsetéetch cycle for the next instruction.
If an interrupt is pending, the processor suspemdsution of the current program,
saves the address of the next instruction and artegtata. Then it sets the PC to the
starting address of an interrupt handler routine.

A

Interupt
disabled

vy | Fetch Execute Interrupt
@ | cycle " cycle [inermupt | cycle

enabled

The actions of the CPU during an instruction cyale defined by micro-orders
issued by the control unit. These micro-ordersiagévidual control signals sent over
dedicated control linesor example, let us assume that we want to exesmt@struction that
moves the contents of register X to register Y both registers are connected to the data bus, B. Th
control unit will issue a control signal to tellgister X to place its contents on the data bus ferA
some delay, another control signal will be sertetbregister Y to read from data bus D.

2.4. 18086 microprocessor architecture

The 18086 microprocessor architecture consistsvofgections:

* the execution unit (EU)

* the bus interface unit (BIU)

These two sections work simultaneously. BIU accessemory and peripherals
while the EU executes the instructions previouskglied. Thus, Intel implemented the
concept of pipelining. Pipelining is the simplestrh to allow the CPU to fetch and
execute at the same time.

Pipelined vs. Nonpipelined Execution
nonpipelined fetch 1 exec 1 fetch 2 exec 2
(e.z.. BORS)
pipelined fetch 1 exec 1
(e.g. BOBG)
fetch 2 exec 2
fetch 3 | exec 3

It only works if BIU keeps ahead of EU. Thus BlUsha buffer of queue. (6
bytes). If the execution of any instruction takes$oing, the BIU is filled to its maximum
capacity and busses will stay idle. It starts teHfeagain whenever there is 2-byte room
in the queue.

When there is a jump instruction, the microprocessast flush out the queue.
When a jump instruction is executed BIU starts ¢tchi information from the new
location in the memory. In this situation EU musitawuntil the BIU starts to fetch the
new instruction. This is known as branch penalty.

ATIISEE SUS (20 SEE)
Se=reral |
REgIEters :
A AL i
= AL I
C CL 1
oF oL |
£F 1 [
EF ! EE
5 I =
=] ! ES
[1 ! =
_ |
AL Diata Bus. i memal
MMEEE: 1T M SIS
A A # ?: : I" Reglsians
TEMPIrATY |l I Eus
~Egslers I coren | EXEME
| "I'_:,_I'E" Sus
I o -
I
EU : resbructon Caeeus
Control el 1]2]3] 2] 56
Eys=m I
I 2 BlE
[i BHs}
1
|
EecLrmon Lrit I Bus ImterTace Uni
(EW) =1
saffild 3k

Execution Unit

The Execution Unit executes all instructions, |juleg data and addresses to the
Bus Interface Unit and manipulates the generakters and the Processor Status Word
(Flags register).

The 16-bit ALU performs arithmetic and logic op@&as, control flags and
manipulates the general registers and instrucio@mands.

The Execution Unit does not connect directly to #ystem bus. It obtains
instructions from a queue maintained by the Busrfate Unit. When an instruction

9

requires access to memory or a peripheral deweeEkecution Unit requests the Bus
Interface Unit to read and write data.
Bus Interface Unit

The Bus Interface Unit facilities communicationtveeen the EU and memory or
I/O circuits. It is responsible for transmittingdadss, data, and control signals on the
buses. This unit consists of the segment registéses, Instruction Pointer, internal
communication registers, a logic circuit to generat20 bit address, bus control logic
that multiplexers data and address lines, theuastim code queue (6 bytes RAM).

2.5. Registers set of 18086
1. General Purpose Registers
The CPU has eight 16-bit general registers. Theeige registers are subdivided
into two sets of four registers. These sets aredtta registers (also called the H & L
group for high and low) and the pointer and indegisters (also called the P & | group).

H , L
15 BIT 1]
AX
i Accumulator
AH ! AL
BX
! Base
Dala) BH i BL
Group o
oa i i Count
Bl
7 Data
DH | DL
SF Stack Pointer
FPainter BP Base Pointer
and
Index
Group Sl Source Index
al Destination Index

The data registers can be addressed by their upplEwer halves. Each data
register can be used interchangeably as a 16-pistee or two 8-bit registers. The
pointer and index registers are always accessddb-#it values. The pican use data
registers without constraint in most arithmetic éoglc operations. Arithmetic and logic
operations can also use the pointer and indexteggisSome instructions use certain
registers implicitly allowing compact encoding.

SP - Stack Pointer. Always points to top item of the stack.

BP - Base Pointer It is used to access any item in the stack;

Sl - Sourcelndex: Contains the address of the current element isdhece string;

DI - Destination Index: Contains the address of the current elementendéstination
string;

10

Table 1. Implicit Use of General Registers

Register Operations
AX Word Multiply, Word Divide, Word 1/0O
AL Bvte Multiply, Byte Divide, Bvte /O, Translate, Decimal Arithmetic
AH Bvte Multiply. Byte Divide
BX Translate
CX String Operations, Loops
CL Variable Shitt and Rotate
DX Word Multiply, Word Divide, Indirect 1/O
SP Stack Operations
SI String Operations
DI String Operations

2. Segment registers

The mp 8086 has a 20-bit address bus for 1 Mbytereal memory but inside the
CPU registers have 16 bits that can access 64 KbVytee 8086 family memory space is
divided into logical segments of up to 64 Kbyteshed he segment registers contain the
base addresses (starting locations) of these mesegiyents.

CS (code segment) - points at the segment contathegurrent program.

DS (data segment)- generally points at the segmeatewariables are defined.

ES (extra segment)- extra segment register, it'©wpdoder to define its usage.

SS(stack segment)- points at the segment contathimgtack.

3. Special purpose registers

IP - the instruction pointer or program counter: Always points to next instruction to
be executed. It contains the offset (displacemehthe next instruction from the start
address of the code segment.

Flags Register- determines the current state of the processas. &lso called PSW
(processor state word). From 16 bits are used Onlfflags Registeris modified
automatically by CPU after mathematical operatighis allows to determine the type
of the result, and to determine conditions to ti@ngontrol to other parts of the

program. Generally you cannot access these regirerctly.
15| 14| 13| 12| 11 10 9 8§ 17 6 b 4 B 2 |1 |0

Of | df |[if |[tf |sf | Zf Af pf cf

All flags can be divided into condition (statusgdgbk and control (system) flags.
Condition flags:
0 bit -Carry Flag (CF) - this flag is set td when there is a carry (borrow) from
the 8 or 16 bit in addition or subtraction openatié-or example when you add
11

bytes255 + 1(result is not in range 0...255). When there isargarry or borrow
this flag is set t®. It is also used to store the value of the MSBhift operations.
2 bit - Parity Flag (PF) - this flag is set td when there is even number of one
bits in result, and t® when there is odd number of one bits. Even if ltdasua
word only 8 low bits are analyzed!

4 bit - Auxiliary Flag (AF) - set tol when there is annsigned overflowfor low
nibble (4 bits).

6 bit - Zero Flag (ZF) - set tol when result izero. For none zero result this flag
Is set ta0.

7 bit - Sign Flag (SF)- set tol when result imegative When result ipositive it

is set td0. Actually this flag take the value of the mostrgigant bit.

11 bit - Overflow Flag (OF) - set tol when there is &igned overflow For
example, when you add byt#80 + 50(result is not in range -128...127).

Control flags:
8 bit - Trap Flag (TF) System flag - Used for on-chip debugging (pas &s)) p
when TF=1. In this case the interrupt is generdietdl) which calls a special
routine to show the state of internal registerser&€hare no instructions to change
this flag. The content of PSW is written in one gi&ah Rg through the stack to can
change it.
9 bit - Interrupt enable Flag (IF) System flag - when this flag is set2aCPU
reacts (se permit) to interrupts on INTR inputtled mp from external devices.
When IF=0 interrupts are not allowed (masked). -t react to NMI (non
maskable) interrupts and to internal interruptsfqggered by instruction INT.
Instructions CLI (clear interrupt) and STI (seteimtpt) are used to control this
flag.
10 bit - Direction Flag (DF) - this flag is used by some instructions to preces
data chains, when this flag is sethte the processing is done forward (increment
of Sl and DI registers), when this flag is sefltthe processing is done backward
- decrement (instructions CLD and STD).

Exercises

Determine the value of CF, ZF, SF, OF, PF and A&t dlfe following addition
operations:

1. 342Ah+57E2h=8C0Ch

2. E42Ah+96B8h=7AE2h

3. C739h+38C7h=0000h

4. F502h+1A7h =F6A9h

5. 6BD3h+90F1h=FCC4h

12

3. Instruction set architecture
The instruction set architecture (ISA) includes:
- instruction set in a binary code (machine langudbe) is recognized by a
processor;
- data types with which instructions can operate;
- environment in which instructions operate.
ISA is an interface between software and hardware:

Program in a high
level language
Compilation to machine l Assembler to machine

Program in ASM

language program language program

Software
ISA level e — — —
ISA program executed by a Hardware
microprogram or hardware

Hardware

Technically, CPUs come in two main architectures:

- CISC (Complex Instruction-Set Computing)

- RISC (Reduced Instruction-Set Computing).

CISC chips (Motorola 68k and Intel x86 architect)reacrifice speed in favour of
having a complete set of built-in instructions ba thip. RISC chips (Power PC, ARM,
SPARC) contain fewer instructions but can exedud tasks much faster.

A computer program can be represented at diffelevels of abstraction. A
program could be written in a machine-independaigh-level language such as Java or
C++.

A computer can execute programs only when theyreypeesented in machine
language specific to its architecture.

A machine language progranfor a given architecture is a collection of maehin
instructions represented in binary form that areogaised by a Control Unit (CU).
According to this binary code, CU selects a certaansition states algorithm and
generates control signals to ALU and registers. dlgerithm can be microprogramed or
hardwired.

Programs written at any level higher than the maelanguage must be translated
to the binary representation before a computeregzacute them.

An assembly language programis a symbolic representation of the machine
language program.

Converting the symbolic representation into machamguage is performed by a
special program called tlzsssembler

Although high-level languages and compiler techgpldvave witnessed great
advances over the years, assembly language rem@sassary in some cases.

13

- Programming in assembly can result in machine ¢bdeis much smaller and
much faster than that generated by a compiler lmfh-level language. Small and fast
code could be critical in some embedded and pa&taplications, where resources may
be very limited. In such cases, small portionshef program that may be heavily used
can be written in assembly language.

- Assembly programmers have access to all the haedveatures of the target
machine that might not be accessible to high-l&arejuage programmers.

- learning assembly languages can be of great halmderstanding the low level
details of computer organization and architecture.

Machine language is the native language of a gm@messor. Since assembly
language is the symbolic form of machine languageh different type of processor has
its own unique assembly language. Before we sthdyassembly language of a given
processor, we need first to understand the dethilsat processor. We need to know the
memory size and organization, the processor regjstee instruction format, and the
entire instruction set.

3.1 Main memory model

Instructions and data are stored in main memory.

The (main) memory can be modeled as an array lbbns of adjacent cells, each
capable of storing a binary digit (bit), havingwalof 1 or 0. These cells are organized
in the form of groups of fixed number of cells.

An entity consisting of 8 bits is called a byte,1d bits — a word, of 32 bits — a
double word. It is, however, customary to exprbessize of the memory in terms of
bytes. For example, if the size of a memory of ssq@eal computer is 256 Mbytes, that
is, 256 x 2° =2°® bytes.

In order to be able to move a byte in and out efrttemory, a distinct address has
to be assigned to each byte.

The number of bitd, needed to distinctly address M bytes in a men®gjiven
by I =log, M . For example, if the size of the memory is 1 Migrt the number of bits in

the address isg, (2°)= 20 bits. Alternatively, if the number of bits in tlaldress id,

then the maximum memory size (in terms of the nunolbdoytes that can be addressed

using thesé bits) ism =2'.
7 0

14

The addressable memory of 18086 contail® Btes (1 Mb). The physical
addresses are within the range 00000-FFFFFh.

Locations OH-7FH (128 bytes) and FFFFO-FFFFF (l&ed)yare reserved for
special use (interrupts and system start aftet)rese

Any 2 neighbour bytes can store a word (16 bitée $maller address contains
the smaller byte. The address of the word is thiresmd of its smaller byte. So, one
address can be viewed as a byte address and aaddrdss. This strategy to store
data is called Little Endian (the opposite strategyalled Big Endian and it applied
by Motorola, Spark and most RISC machines).

22 H Unaligned
21 H DW
20 h DB
24B H 46 1FH Aligned
24A H 00 1EH DW
249 H 65 1D H DB
248 H 3A 1CH DB
247 H 8C 1B H } Instruction
246 H 04 1A H
19H Instruction

The value of a binary word at address 246H is 880df a DD at address 248 H
- 4600653A.

The word with even address is called aligned. Thedwvith odd address is called
unaligned. The mp transfer words with even addeess& memory access cycle and
words with odd addresses in 2 cycles. That's wisyrdcommended to store data on
even addresses.

3.2 Memory segmentation

Segmentation provides a powerful memory managemenhanism:

1. It allows programmers to partition their program®imodules that operate
independently of one another.

2. Segments provide a way to easily implement olpeietated programs.

3. Segments allow two processes to easily share data.

4. It allows extending the addressability of a prooes$n the case of the
8086, segmentation let Intel's designers extendrtheimum addressable
memory from 64KB to 1MB.

Disadvantage:Difficulties with physical address manipulationgrograms.

15

Memory looks like a linear array of bytes. A singlelex (address) selects some
particular byte from that array. Segmented addngssses two components to specify a
memory location: a segment value and an offsetinvttiat segment.

A full segmented address contains a segment compand an offset component

- segment:offset.

On the 8086 through the 80286, these two valuesl@rbit constants. On the
80386 and later, the offset can be a 16 bit cohstaa 32 bit constant.

The size of the offset limits the maximum size gegment. On the 8086 with 16
bit offsets, a segment may be no longer th§r22*2°=64KB; it could be smaller
(and most segments are), but never larger. The@BaRA8 later processors allow 32 bit
offsets with segments as large &2°*2°°=4GB.

The segment portion is 16 bits on all 80x86 promesssThis lets a single program
have up to 65,536 different segments in the program

All memory space is considered as a set of 64 Kby segments. The segments
are defined for each application. Segments areideresl to be independent and
uniquely addressable. For each program can bentlyrr@ddressed 4 segments using
CS, DS, ES and SS. Memory segments can be differanthave common memory
spaces or can even coincide. Segment rgs areliggtaat the beginning of the
application. They contain the base (low) addresghefsegment which is always a
multiple of 16 (4 low bits are considered 0).

[emera [seones |

OH 10000 H 20000 H 30000 H

Physical address calculation
Despite the fact that the 80x86 family uses segetkrddressing, the physical
memory connected to the CPU is still a linear anflytes.
Addresses in the programbogical addresses
The linear address that appears on the addresgpbysical address.

Plus the offset to Segnent:offset

abtain the a ddress - i
of the actual metnory
[ocalioh bo access.

Segnent porks here e
Logical address notatiorsegment: offset

16

Physical address calculatiosegment*10H+offset

Segment*10H is equivalent to 1 hexadecimal (4 kstsjt left. To calculate the
physical address in BIU the base address is shiisdeft and the offset is added.

For example if (CS)=123A h and (IP)=341B h, thg9cal address will be

123A0 the base address of the segme
341B offset
157BB a physical address

The carry from MSB is ignored that give the podgibiof ring memory
organization: after FFFFF byte follows 00000 bylte.is true for segments also.

Sources of physical address:

Type of memory access Implicit segment Alternaiggment Offset
Instruction fetch CS - IP
Stack operation SS - SP
Variable DS CS, ES, SS EA
String source DS CS, ES, SS SI
String destination ES - DI
BP as base Rg SS CS, DS, ES EA

EA — effective address. EA is the offset of a Maleathat is calculated by EU according to the
memory addressing mode specified in the instrudborthis variable. There are a total of 17 différe
memory addressing modes on the 8Bg.defaultBX, SI andDI registers work wittDS segment
register;

Exercises
Memory organization

1. Calculate the physical address according tdalf@ving logical addresses:
a) 1205H : 709H,

b) ABCDH : 89ABH,

c) FFFOH : OFFH,

d) 3333H : 4444H,

e) 8000H : 8000H.

2. Calculate the offset according to the followpig/sical addresses (CS=2000H) :
a) 20002H,

b) 20010H,

c) 20300H,

d) 24000H,

e) 2FFFFH.

3. Calculate CS according to the following physaddiresses (offset is 400H) :

a) 10400H,

b) BO40OH,

17

c) 30800H,

d) CDEOOH,

e) FFFFOH.

4. Which of the following physical addresses beltmthe segment with CS=2400H:
a) 33FFFH,

b) 23000H,

c) 27890H,

d) 33000H,

e) 34000H.

5. Physical address of the variable is 358BC H wb8r3234 H. Calculate the physical address of the
variable when CS is changing 4310 H.

3.3. Stack memory

A stack memory is a small area of reserved memsey in the following cases:

1. To store temporary the data from general purpegsters;

2. To store the content of PSW, CS and IP whemgerrupt or a procedure is
processed:

3. To transmit the procedures parameters.

The stack organization principle is LIFO.

Stack location is determined by SS:SP. SS holdé#se address of stack and SP
holds the offset of the top of the stack (the nmestent stack entry). Instructions to
operate with stack are:

PUSH - Copy specified word to top of the stack.

POP - Copy word from top of the stack to speciicaltion.

CPU registers Main memory

[SS (Base) FFFFFF

SP(To
| (Top) //’% Reserved
— stack
| Stack limit %/ block

000000

According to Intel convention the stack grows framgher addresses to lower
addresses (according to Motorola convention theksgjrows from lower addresses to
higher addresses). The base of the stack (S$}he &igh address end of the reserved
stack block and the limit is at the low address. é¢hdll stack elements are 16-bit words
(2 bytes), instruction PUSH will cause the decrenwrSP with 2 and POP will cause
the increment of SP with 2.

18

Instruction format

Assembly language is the symbolic form of machlaeguage. Assembly
programs are written with short abbreviations thepresents the actual machine
instruction called mnemonics.

The use of mnemonics is more meaningful tham t¢ighex or binary values,
which would make programming at this low level easind more manageable.

ExamplesMov - move,Add — addition,Sub —subtractionMul — multiplication.

An assembly program consists of a sequence of &dbgestatements, where
statements are written one per line. Each linenoAssembly program is split into the
following four fields: label, operation code (ope)doperand, and comments.

Label Operation Code Qperqud Comment

: : (Required in some ; .

(Optional) (Required) S (Optional)
instructions)

Labels are used to provide symbolic names for mgraddresses. A label is an
identifier that can be used on a program line oreoto branch to the labeled line. It can
also be used to access data using symbolic nanhesoperation code (opcode) field
contains the symbolic abbreviation of a given opemna The operand field consists of
additional information or data that the opcode nexgu The operand field may be used
to specify constant, label, immediate data, registea memory address. The comments
field provides a space for documentation to explemat has been done for the purpose
of debugging and maintenance. In 18086 instructiomnsists from one to six bytes.

According to the length of the instructions exists types of ISA:

1. With fixed length instructions (commonly used infSRI architectures)

2. With variable length instructions (commonly usedCitsC architectures)

The advantage of using variable length instructisrtbat they reduce the amount
of memory space required for a program. In 180&8ructions are from one byte to a
maximum of 6 bytes in length.

The advantage of fixed length instructions is ity make the job of fetching
and decoding instructions easier and more efficiaritich means that they can be
executed in less time than the corresponding Variehgth instructions.

Instructions can be classified based on the nurmbeperands as: three-address,
two-address, one-address, and zero-address.

Examples:
3 addresses Add x,y,z (2)=(xX)+(y)
2 addresses Add ax,bx (Ax)=(ax)+(bx)
1 addresses Mul bl (Ax)=(ah)*(bl)
0 addresses Push bx Top of the stackbx)

19

Three-address instruction formats are not commatalise they require a
relatively long space to hold all addresses.

In two-address instruction one address is an opeaad also a result.

In one-address instruction a second address isiampUsually it is the
accumulator AX. It is used for one operand anddsailt.

Zero-address instructions are applicable to staeknony and use as address the
content of SP (top of the stack).

The number of addresses per instruction is a bdegign decision. Fewer
addresses per instruction result in more primitistructions, which require a less
complex CPU. It also results in instruction of geotength. On the other hand programs
contain more total instructions and have a longecetion time. Another problem: with
one-address instructions, the programmer has alailanly one general-purpose
register — the accumulator, with multiple addrasstructions it is common to have
multiple general-purpose registers. Because registerences are faster than memory
references this speeds up execution. Most conteanpanachines employ a mixture of
two- and three- address instructions.

3.5. Addressing Modes
The different ways in which operands can be addcesse called the addressing
modes. Addressing modes differ in the way the a$diaformation of operands is
specified.
EA - actual (effective) address (EA) of the locatmmntaining the operand,
The addressing modes available in 8086 are:
1. Immediate Addressing Mode:
According to this addressing mode, the value of dperand is (immediately)
available in the instruction itself.
Operand=A,
where A - the content of the address field in tigruction
Typically immediate operand represents constana dat byte or word). The
number is stored in two’s complement form.
Examples
mov al, 48 ; load 30H in AL;
mov cXx,2056H
xor si,1 ;invert LSB in Sl register;
and al,80H ; highlight MSB of AL
or di, 8000H ; setto 1 MSB of DI
The advantage of immediate addressing is that nmangereference other than
the instruction fetch is required to obtain therapé. The disadvantages: the size of the
number is restricted to the size of the addreds; f&echange in the value of an operand
requires a change in every instruction that usesnimediate value of such an operand.

20

2. Register Addressing Mode:

To access the content of the register it is necgdsaspecify the name of the
register. The eight and 16 bit registers are adytaialid operands for this instruction.
The only restriction is that both operands musbtie same size.

mov ax, bx ;Copies the valugf BX into AX
mov dl, al ;Copies the valuani AL into DL
mov ax, ax ;Yes, this is legat it performs nothing!
add bx,di; bx=bx+di
sub cl,ah ; cl=cl-ah
Advantage: the registers are the best place to &ften used variables.
Instructions using the registers are shorter asikfahan those that access memory.
Disadvantage: limited address space and the tinmitenber of general purpose
registers.

3. Direct Addressing mode (displacement only) (6 @tk cycles)
In the direct addressing mode the address fieltagmnthe EA of the operand.
EA=A
It consists of a 16 bit constant that specifiesatiéress of the target location.
mov al, [8088h]; loads the Al register with a cagythe byte at memory location 8088h.
mov [1234h],dl ; stores the value from the DI stgf to memory location 1234h:

MOY AL DS{3085h]

WY DS 12340, DL

By default, all displacement-only values providésefs into the data segment. If
you want to provide an offset into a different segin you must use a segment override
prefix before your address. For example, to acloesgion 1234h in the extra segment
(es) you would use an instruction of the form

mov ax,es:[1234h].

You can also access words on the 8086 processors :

| 1235h
| fo34r

RAOY A, DS:[1234H]

21

Other examples:

BETA dw 1234h

MOV CX, BETA ; move the contents of the memory loaa, which is offset by
BETA from the current value in DS into internal istgr CX.

Inc COUNT

Mul X ; multiply ax with variable X

Ror TEMP ; shift right variable TEMP
In inc, mul, ror instructions it is impossible tetdrmine the size of a variable

Inc word ptr COUNT

Ror byte ptr TEMP

The technique was common in earlier generatiom®woiputers but is not
common on contemporary architectures. It requirdg one memory reference and no
special calculation. The disadvantage is thatavioles only a limited address space.

4. Register Indirect Addressing mode: (5 clock c)

In the register indirect mode, in the instructienincluded a name of a register
that holds the EA of the operand. In this case naméhe register is included in
parentheses. EA=[R]

There are four forms of this addressing mode or80&6, best demonstrated by
the following instructions:

mov al, [bx]
mov al, [bp]
mov al, [si]
mov al, [di]
The [bx], [si], and [di] modes use the ds segmegntéfault. The [bp] mode uses the
stack segment (ss) by default.
Example:
MOQV AL, [BX] ; This instruction moves the conteri§the memory location DS:BX to

the AL register.
RAOY AL, [BX] ’—ﬁﬂ

+

MOV AL, [BP] ; This instruction moves the conteraf the memory location
SS:BP to the AL register.

22

MOy AL [BF] ’—E ."

+
e S
add AX,[DI] ; add to AX the content of memory cBIE*10H+DI (DS:DI)
div word ptr [SI] ; divide the word from memory
xor [BP], DL
This addressing mode allows calculating the addilesing program execution
that is useful in case of addressing of differaatadvith one instruction.

5. Based Addressing mode: (9clock ¢)

In this addressing mode the register contains aonemddress and the address
field contains a displasement from that address.slta convenient means of
implementing segmentation.

In such addressing EA=disp+[BP] or [BX]. It is uskein case of addressing to
certain element in data arrays, when disp or elemember is known and base address
is calculated during program execution.

The based addressing mode use the following syntax:

mov al, disp[bx] moval, [bx+disp]
mov al, disp[bp] moval, [bp+disp]
The displacement field can be a signed eight mstamt or a signed 16 bit constant.

MOY AL, [BX +disp] ’_E_.,

—4

[os —L

mov AX, [BP+10] ; load in AX the Bword of the array

If bx contains 1000h, then the instruction
mov cl,20h[bx] will load in cl the content of menydocation ds:1020h.

If the length of the addressing field is K, therthmone segment-base register we
can address‘2words.

6. Indexed Addressing mode: (9 clock c)

In this addressing mode, the address field containgin memory address and
the register, called the index register, contaipsstive displacement from that address.
The indexed addressing modes use the followingagynt
mov al, disp][si] moval, [si+disp]

23

mov al, disp[di] moval, [di+disp]
The displacement field can be a signed eight istant or a signed 16 bit constant.

In such addressing EA=disp+[SI] or [DI]. It is uskin case of itterative
operations, when disp is the address of the fieshent and Sl or DI value specified the
element. First they are initialised to 0 and aft&ch operation the index register is
incremented.

Mov Z[Dl], AX; move the content of AX to array elemt
add AX, ARRAYISI] ; add AX with the element of ARY,

7. Based Indexed Addressing Mode: (7-8 clock c)

The based indexed addressing modes are simply oatrdns of the register
indirect addressing modes. These addressing modesthe EA by adding together a
base register (bx or bp) and an index registeor(sl)). The allowable forms for these
addressing modes are

mov al, [bx][si] mov al, [bx+si]
mov al, [bx][di]
mov al, [bp][si]
mov al, [bp][di]

MO AL, [BX+31] ’_E_.,

i
i

D] o=

Suppose that bx contains 1000h and si contains. 88@n the instruction
mov al,[bx][sI]

will load al from location DS:1880h. Likewise, ifpbcontains 1598h and di contains
1004,

mov ax,[bp+di]
will load the 16 bits in ax from locations SS:259@nd SS:259D.
It is useful in case of addressing to certain elgnie two dimensional arrays or to an
array from stack (BP is the address of stack elémen

8. Based Indexed Plus Displacement Addressing Mod#&1-12 clock c)

24

These addressing modes are a slight modificatidihebase/indexed addressing
modes with the addition of an eight bit or sixtdeihconstant. The following are some
examples of these addressing modes:

mov al, disp[bx][si]

mov al, disp[bx+di]
mov al, [bp][di][disp]
PO AL [BX+51+dsp]
N ——
+
(s ———

Then mov al,10h[bx+si] loads al from address DS@21

mov ch,125h[bp+di] loads ch from location SS:112A;

mov al, [op+si+disp]
|
Suppose bp contains 1000h, bx contains 2000h, rgaics 120h, and di contains 5.
mov bx,cs:2[bx][di] loads bx from location CS:2007.

Generally, the more complex an addressing modehes, longer it takes to
compute the effective address. Complexity of arregking mode is directly related to
the number of terms in the addressing mode. Fampla disp[bx][si] is more complex
than [bx].

The displacement field in all addressing modes @ixdsplacement-only can be a
signed eight bit constant or a signed 16 bit comsth your offset is in the range -
128...+127 the instruction will be shorter (andréfiere faster) than an instruction with a
displacement outside that range. The size of theevia the register does not affect the
execution time or size. So if you can arrange toaplarge number in the register(s) and
use a small displacement, that is preferable ovarge constant and small values in the
register(s).

If the effective address calculation produces aieajreater than OFFFFh, the
CPU ignores the overflow and the result wraps allduack to zero. For example, if bx
contains 10h, then the instruction mov al,0FFFFhjpil load the al register from
location ds:0Fh, not from location ds:1000Fh.

3.6. Data types

Machine instructions operate on data. The mosoriapt categories of data are:
Addresses (can be considered to be unsigned is)eger
Numbers (integer or fixed point, floating point ashecimal)
Characters (The most commonly used character cofi€CII code)

25

Logical data
A variable can be viewed in any numbering system:
HEX - hexadecimal (base 16).
BIN - binary (base 2).
OCT - octal (base 8).
SIGNED - signed decimal (base 10).
UNSIGNED - unsigned decimal (base 10).
BCD packed (one digit — 4 bits) and unpacked (one digit —t8)bi

DB define a byte
DW define a word
DD define a double word

X DB 104,-1 X |68
Y DW 100,200H FF
Y 64 | word

DATA DB 3*20, -1, 100 DUP(?),? 00
Packed DB 78H,56H 00 | Il'word
Unpacked DB 7H,8H,5H,6H 02
There are 2 type of data definition: digital andi@edsable.
Myseg segment myseg | 7 O
X DB OFFH; one byte equal to FF X FF 0
Y DW 1234H; one word equal to 1234 Y 34 1
Z DW Z; one word = 0003 12 2
Var DW Var+5; one word = 000A (the offset of theiahle +5) | Z 03 3
Ate DB 5*6; one byte =1E 00 4
Ss DW ?; one word without initialisation Var OA 5
Myseg ends 00 6

ate 1E 7
Characters string definition: Each character isestan one byte. ss XX 8
The address of the string is the address of thdemnhgte. XX 9

Message DB ‘HELLO’ (ASCIl code in memory H(48),45],
E(4C), O(4F)
Block DB 128(*’) 128 spaces

3.7. Instruction types

The X86 family of processors defines a number sfruction types.

|.Data transfer instructions
1. General-purpose data transfer

MOV dst,src (dst)— (src) copies the second operand to the first opleran

26

XCHG dst,src (dst)- (src) Exchange bytes or exchange words.
2. Data transfer with stack
PUSH src Copy specified word to top of stack.
POP dst Copy word from top of stack to specific lboa.
3. Flag transfer
PUSHF Copy flag register to top of stack.
POPF Copy word at top of stack to flag register
LAHFLoad AH with the low byte of the flag register. Wperands
SAHF Store AH register into low 8 bits of Flags registdo operands
4. Address transfer
LEA reg,src Load effective address of operand in sigeciegister. Lea Sl, X
LDSreq, src Load DS register and other specifiedstegirom memory. LDS
SI, Y where Y is dd- double word
LES reg,src Load ES register and other specified tegisom memory.
5. 1/O port transfer
IN ac, port ; Copy a byte or word from specified port to acalator (AX or
AL).
IN ac, DX
OUT port, ac Copy a byte or word from accumulator to speciped.
OUT DX, ac

[I. Arithmetic instructions
Arithmetic operations are executed on integer rensim 4 formats:
unsigned binary (byte or word) 5h - 0000 0101
signed binary (byte or word), -5h or FAh 1111101
packed decimal (the string of decimal digits dogexl in consecutive 4-bit groups :
3251- 0011 0010 0101 0001)
unpacked decimal (each digit is stored in lowt4shrt of the byte: 3251 - ****0011
****0010 ****0101 ****0001)
All arithmetic instructions influence flags thatrcbe checked with conditional
transfer instructions.
Arithmetic operations can use all addressing madé®ne operand should be a
register.
ADD dst, src, dst- (dst)+(scr) src can be also immediate value of 8Bcobits
ADC dst,src, dst— (dst) + (src)+CF. It is used in multiple precisigperations
SUB dst, src dst- (dst)-(src Subtract byte from byte or word from dior
SBB dst, src dst- (dst)-(src)-CF
INC opr, opr-(opr)+1 do not change CF.
DEC opr, opr— (opr)-1

27

NEG opr opr—-(opr) Negate — invert each bit of a specified lytevord and add 1
(form 2's complement).

CMP oprl, opr2 oprl-opr2 Compare two specified bytes or tpecgied words and
do not keep the result, just for flag§(SF, ZF, AF, PF, CF according to result)is used
with conditional jump instructions.

CBW (no opr) (for signed binary) converts byte to wdfdhe high digit in AL is O then

all AH bits are O, if high bit in AL is 1 then alH bits are 1.
.model small
.data
xdb -10
y dw 1234h
z dw ?
.code
start: mov ax,@data
mov ds,ax
mov al, x ;AL=F6
cbw ; converteste octetul la cuvant AX=FFF6 h
add ax,y ;AX=122Ah
mov z, ax
end start

CWD convert word to double word. Works with AX and DXgh word)
MUL src (AX) —(AL)*(src) for bytes CF and OF =1 if the high bygenot 0
(DX:AX) (AX)*(src) for words
IMUL src Multiply signed byte by byte or signed word by @orCF and OF =1 if the
high byte is not the extension of sign
EX. (AL)=B4 1011 0100cc (11001100)cd -gtyhed) or 180(unsigned)
(BL)=11h(17 decimal)
IMUL will form FAF4=-1292, CF=0F=1
MUL will form 0BF4=306Q, CF=0OF=1
DIV src divisor is a byte
(AL))~ quotient (AX)/(src)
(AH))-remainder (AX)/(src)
divisor is a word
(AX))~ quotient (DX:AX)/(src)
(DX))-remainder (DX:AX)/(src)
IDIV src Divide signed word by byte or signed double woydnwmrd.
(AX)=0400 1024,
(BL)=B4 (-76 or 180)
DIV BL guotient (AL)=05=% remainder (AH)=7C=12¢
IDIV BL quotient (AL)=F3=-13 remainder (AH)=24=36

28

Packed BCD arithmetic
DAA Decimal adjust After Addition.
DAS Decimal adjust After Subtraction.

Unpacked BCD arithmetic

AAA - ASCII (Unpacked) BCD correction after addition
AAS - ASCII (Unpacked) BCD correction after subtrawct
AAM - ASCII adjust after multiplication
Corrects the result of multiplication of two BCDlwes.
Algorithm:

AH = AL/ 10

AL = remainder

Example:
MOV AL, 15 ; AL = OFh
AAM ; AH =01, AL =05
RET
AAD - ASCII adjust before division;
Prepares two BCD values for division.
Algorithm:
AL = (AH * 10) + AL
AH=0
Example:
MOV AX, 0105h ; AH =01, AL =05
AAD ; AH = 00, AL = OFh (15)
RET

lll. Unconditional transfer instructions:
JMP operand, where operand can be a short, near, or far agldre
A jump operation reaches a short address by a piseslfifset, limited to a distance of -
128 to 127 bytes (the same segment).
A jump operation reaches near address by a one-effsel, limited to a distance of
-32,768 to 32767 bytes within the same segmentsd@hee segment).
A far address may be another segment and is redihadsegment address and offset;
Address specification:
a) implicit
b) using PTR directive:
JMP SHORT PTR operand
JMP NEAR PTR operand
JMP FAR PTR operand

IV. Conditional transfer instructions
All instructions have the following formabpcode data8

29

The first byte is the operation code and the sedyte is the 8- bit displacement to the
next instruction in 2-s complement system. The tiegalisplacement means go back
and positive disp. means go forward. 8-bit dispiaeet constraint the distance of
jumping in range of -128...127. Address of jumpi(i§)-128 ... (IP)+127
These instructions are often used after a compateauction. The terms B (below)

and A (above) refer to unsigned binary numbers.v&bmeans larger in magnitude. The
terms G (greater than) or L (less than) refer gnedl binary numbers. Greater than
means more positive.

instruction Jump function
condition
JE,JZ ZF=1 Jump if equal/Jump if zero
JNE, JNZ ZF=0 Not Zero, Not Equal
JS SF=1 Sign
JNS SF=0 Not Sign
JO OF=1 Overflow
JNO OF=0 Not Overflow
JP,JPE PF=1 Parity, Parity Even
JNP, JPO PF=0 Not Parity, Parity Odd
JB, JNAE, CF=1 Below, Not Above or
JC Equal, Carry
JNB, JAE, CF=0 Not Below, Above or
JNC Equal, Not Carry
JL, INGE SF£OF Less, Not Greater or Equal
JLE,JNG SF£OF sau Less or Equal, Not Greater
ZF=1
JBE, JNA CF=1 sau Below or Equal, Not
ZF=1 Above
JNL, JGE SF=0OF Not Less, Greater or Equal
JNLE, JG SF=OEkKi Not Less or Equal, Greater
ZF=0
JNBE, JA CF=Gi ZF=0 Not Below or Equal,
Above
JNP, JPO PF=0 Not Parity, Parity Odd
Ex1.
IF(X>Y)AND (Z<T)) OR (A<>B) THEN C :=D;
; Test the boolean expression:
mov ax, A
cmp ax, B

jne DolF
30

mov ax, X

cmp ax, Y

jng EndOflf

mov ax, Z

cmp ax, T

jnl EndOfIf
Dolf: mov ax, D

mov C, ax
: End of IF statement
EndOflF:

Ex. 2

mov al, 25 ;setalto 25.

mov bl, 10 ; set bl to 10.

cmp al, bl ;compare al - bl.

je equal ;jumpifal=bl(zf =1).
mov ah,6

mov dI, 'n’

int 21h

jmp stop ; SO print 'n’, and jump to stop.
equal: ; if gets here,

mov ah,6

mov dl, 'y'

int 21h

stop:

ret ; gets here no matter what.

V. Control instructions:

a) Iteration control instructions:

These instructions can be used to execute a sé#nestructions some number of times.
LOOP opr ;Loop through a sequence of instructions until GX=

LOOPE/LOOPZ opr ; Loop through a sequence instructions while ZBad CX# 0
LOOPNE/LOOPNZ opr ;Loop through a sequence instructions while Z&a@ CX# 0
JCXZ ; Jump to specified address if CX=0

b) Processor control instructions
STC ;Set carry flag CF to 1
CLC ;Clear carry flag CF to 0
CMC ;Complement the state of the carry flag CF
STD ;Set direction flag DF to | (decrement stringnpers)
CLD ;Clear direction flag DF to O
31

STl ;Set interrupt enable flag to 1 (enable INTRuit)p
CLI ;Clear interrupt enable flag to O (disable INifiRut)

c) Execution control instructions:

HLT ;Halt (do nothing) until interrupt or reset

WAIT ; Wait (do nothing) until signal on the test psnaow

ESC ;Escape to external coprocessor such as 808788

LOCK ;An instruction prefix. Prevents another proces$sam taking the bus while the
adjacent instruction executes

NOP ;No action except fetch and decode (the samgtitmas CONTINUE in loop
operations)

VI. Logic instructions
NOT opr ; Invert each bit in a byte or word. Do noange the flags.
AND dst, src (dst)-(dst)[J(src) CF=0 OF=0 ; AND the content of a byte avad
with another byte or word.
AND al,5Bh
(al)=95h=10010111
mask =01011010 resetto O bits 0,2,5,7
al =00010010
OR dst, src (dst)-(dst)(src) CF=0 OF=0 ; OR the content of a byte oroadmvith
another byte or word.
OR al,80h OR al, 10000000B
(al) = 1Ah=00011010
mask =10000000 set to 1 7-th bit
al 10011010
XOR dst, src (dst)- (dst)d(src) CF=0 OF=0 ; Exclusive OR the content of teloy a
word with another byte or word.
XOR al, OFFh; invert all bits in AL
TEST oprl,opr2 oprlopr2; Do not store the result. It is usedffags setting.
It can be used with a mask. If any 1s bits of maskespond to 1s bits of operand then
ZF=0, over wise ZF=1.
As usual after TEST are used JZ or ZNZ instructions

Example : al=10101101
not al al=00010
Test al,81h mask=10000001
jz exit test =00000

Example. Find the absolute value of the number.

Mov ax, 8111h 1000 0001 0001 0001
32

cwd ; replicate the high bit into DX 1111.....
xor ax, dx ;take 1's complement if negative,change if positive 7EEEh
sub ax, dx ; AXis 2's complement if it wagatve The standard 7EEFh

mov bx,8111h

and bx, bx ; see if number is negative

jns notneg ; if it is negative... jump nayrsi

neg bx ;...absolute value or make it fpasif SF=1
notneg: ; jump to here if positive

VII. Shift instructions
SHL/SAL opr, cnt ;Logic/arithmetic shift left

= —

CF
SHR opr, cnt ;Logic shift right, put zero(s) in MSB(s)

E]

0 CF

SAR opr,cnt ; Arithmetic shift right, copy old MSB into new NBS

C/ - |—~|CF|

Influence all flags except AF

Rotate instructions
ROL opr, cnt ;Rotate bits of byte or word left, MSB to LSB aidCF

CF‘ : ‘—‘

The L5E of the result =CF

ROR opr, cnt ;Rotate bits of byte or word right, LSB to MSBdatio CF

. -]

CF

The MSE of the result =CF

RCL opr, cnt ;Rotate bits of byte or word left, MSB to CF &0l to LSB

CF
RCR opr, cnt ;Rotate bits of byte or word right, LSB to CF &@#d to MSB

33

B -
CF
Influence only CF and OF. In all cases in 1-bit siii OF=1 if the MSB is changed

and OF=0 otherwise.
Cnt can be 1, variable that is equal to 1 or regiGL with any value.

We can multiply or divide numbers with logic (fongigned numbers) and with
arithmetic (for signed numbers) shifts.

6*2 00000110*10 =00001100

-6/2 11111010*10= 11111101 (-3)

VIII. String instructions
A string is a series of bytes or a series of wandsequential memory locations. A
string often consists of ASCII character codes. &X' 'in a mnemonic is used to
specifically indicate that a string of bytes ids®acted upon. A "W” in the mnemonic is
used to indicate that a string of words is to hecapon.
MOVS/MOVSB/MOVSW
Copy byte /word from DS:[SI] to ES:[DI]. Update &id DI.
ES:[DI] = DS:[SI]
if DF = 0 then
o SI=SI+1(2)
o DI=DI+1(2)

else
o SI=SI-1(2)
o DI=DI-1(2)
CMPS/CMPSB/CMPSW

Compare bytes/words: ES:[DI] and DS:[SI].
DS:[SI] - ES:[DI]
set flags according to result:
OF, SF, ZF, AF, PF, CF
if DF = 0 then
o SI=SI+1(2)
o DI=DI+1(2)

else
o SI=SI-1(2)
o DI=DI-1(2)
SCAS/SCASB/SCASW

Compare bytes/words: AL/AX and ES:[DI].
ES:[DI] — AL/AX

34

set flags according to result:
OF, SF, ZF, AF, PF, CF
if DF = 0 then
o DI=DI+1(2)
else
o DI=DI-1(2)
LODS/LODSB/LODSW
Load byte from DS:[SI] into AL or string word in#®X. Update SI.
AL/AX = DS:[SI]
if DF = 0 then
o SI=SI+1(2)
else
o SI=SI-1(2)
STOS/STOSB/STOSW
Store byte from or word from AL/ AX into ES:[DI]. ptlate DI.
ES:[DI] = AL/AX

if DF = 0 then
o DI=DI+1(2)
else
o DI=DI-1(2)
XLATB

Translate byte from table.

Copy value of memory byte at DS:[BX + unsigned A@.JAL register.
Algorithm:

AL = DS:[BX + unsigned AL]

Example:
ORG 100h
x DB 11h, 22h, 33h, 44h, 55h
LEA BX, x
MOV AL, 2
XLATB ; AL=33h
RET
REP chain instruction
Repeat following MOVSB, MOVSW, LODSB, LODSW, STOSBTOSW instructions
CX times.
Algorithm:
check _cx: if CX <> 0 then
do following chain instruction
CX=CX-1
go back to check_cx

35

else
exit from REP cycle
REPE/REPZ
Repeat following CMPSB, CMPSW, SCASB, SCASW ingiuts while ZF = 1 (result
is Equal/Zero), maximum CX times.
Algorithm:
check cx: if CX <> 0 then
- do following chain instruction
CX=CX-1
if ZF = 1 then:
o go back to check cx
else
o exit from REPE/REPZ cycle

else
exit from REPE/REPZ cycle
REPNE/REPNZ
Repeat following CMPSB, CMPSW, SCASB, SCASW indiarts while ZF = 0 (result
is Not Equal/Not Zero), maximum CX times.
Algorithm:
check _cx: if CX <> 0 then
- do following chain instruction
CX=CX-1
if ZF = 0 then:
o go back to check cx
else
o exit from REPNE/REPNZ cycle

else
exit from REPNE/REPNZ cycle

3.8. PROCEDURES

The basic mechanism for declaring a procedure is:
procname proc {NEARor FAR}
< statements>

procname endp
A simple procedure may consist of nothing more thagquence of instructions ending
with a ret instruction. For example, the followitygrocedure” zeros out the 256 bytes
starting at the address in the bx register:
ZeroBytes proc

X0r ax, ax

mov cXx, 128

36

ZeroLoop: mov [bx], ax
add bx, 2
loop ZeroLoop
ret

ZeroBytes endp

CALL and RETn Operations

The 80x86 supports near and far subroutines. Nals and returns transfer
control between procedures in the same code segfmntalls and returns pass control
between different segments. The two calling andrretmechanisms push and pop
different return addresses.

TheCALL instructions provides for the transfer of contmoh called procedure.

TheRET returns control back to the calling procedure.
The assembler can tell from the procedure whetldr R near or far and generates the
appropriate object code or it can be explicitly ated by using RETN or RETF.

Near Call and Return

When a near procedure is called:

1. The IP is pushed onto the stack.

2. The IP is loaded with the address of the callededure.
3. Upon executing the return the IP is poppedladfdtack.

CALL
(SP) ~(SP)-2
SS: ((SP) + 1:(SP)) ~ (IP)
RET
(1P) ~ SS: ((SP) + 1:(SP))
(SP) ~ (SP)+2
[(SP) < (SP) +n]

Far Call and Return

1. The CS and IP are pushed onto the stack.
2. The IP and CS of the procedure are placed itRtzd CS registers.
3. Upon executing the return the IP and CS are @dpjff the stack.

CALL
(SP) ~ (SP)-2
SS: ((SP) + 1:(SP)) ~ (CP)
(SP)c (SP) -2
SS: ((SP) + 1:(SP)) ~ (IP)

37

RET
(IP) ~ SS: ((SP) + 1:(SP))
(SP) ~ (SP)+2
(CP) ~ SS:((SP) + 1:(SP))
(SP) ~ (SP)+2
[(SP) < (SP)+n]

3.9. Interrupts

The 8086/88 microprocessors allow normal prograeceton to be interrupted
by external signals or by special instructions edhleel in the program code. When the
microprocessor is interrupted, it stops executihg turrent program andalls a
procedure whichservicesthe interrupt. At the end of thaterrupt service routine
(ISR), the code execution sequence is returned to tgmal; interrupted program.

Interrupt sources

Hardware interrupts (external) generated by an external device remezsgice

1. mascable - (INTR).
2. non-maskable interrupt - (NMI)
Software interrupts:
1. Generated by specific instruction INT or INTO;
2. Generated when special conditions at the microgsmrdevel appear
— internal interrupts or traps (divide error, sangtep).

Each interrupt has a number called itfiter rupt type or interrupt vector.

Interrupt numbers are always in the rate 0 to 2&&mndal (OOH to FFH). Some
interrupt numbers are fixed by the 8088/8086 hardwathers are chosen by the
designer.

Dedicated (predefined) interrupts:

INT O - divide error (generated by CPU after executidnDdvV and IDIV
instructions if the quotient is too large);

INT 1 - single step (if TF=1 this interrupt occurs af@ich instruction and allows
program debugging);

INT 2 - NMI (external non-maskable interrupt. Is thdyointerrupt which is not
disabled by the CLI instruction. It is designechandle catastrophic problems such as a
power failure in order to save data before alb&);

INT 3 - breakpoint (A break point is used to examine@tiJ and memory after
the execution of a group of Instructions);

INT 4 — signed number overflow.

When an interrupt occurs, the location to whichoexien jumps is given in the
interrupt vector table.

Each entry in the table is 4 bytes long - 2 bytesafnew CS value and 2 bytes for
a new IP value.

There are 256 entries in the table, one for eaehnript number.

38

The table resides at physical memory addresses08D@@ough 003FFH (1 KB

of table).

As the address of each memory byte is defined malirsegment address (2
bytes) and offset (2 bytes), the interrupt vectas # bytes. The interrupt vector contains
the address of the first instruction of the ISRIUGRlculates the location of the interrupt
vector by multiplying by four the interrupt type.

1 byte | 2 byte

3 byte | 4 byte

Offset (to be written in IP)

Segment (to be written in CS)

The structure of interrupt vector.

Interrupt vector table:

INT Number Physical Address

INT OO0
INT O1
INT 02

INT FF

INT O- INT 4 — dedicated

INT 5 - INT 31 are reserved by INTEL (27);

INT 32 - INT 255 depend on users (224).

Interrupts havepriority: interrupts with lower interrupt numbers have higher
priority. An interrupt with higher priority can ietrupt an interrupt with lower priority.

Interrupt routine

When an interrupt occurs, the processor
o stores FLAGS register, current IP and CS valuesstck,
» disables further interrupts, (IF) <—6-(TF) <——O
« fetches from the bus one byte representing intemumber,
e jumps to ISR, address of which is stored in |arati

4 * <interrupt type>. (CS) <—— (n*4 #,2IP) <—— (n * 4)

ISR should return with the IRET instruction.
The IRET instruction: Restore CS, IP and FLAGS stgi from stack.

Interrupts

eInitiated by botrsoftware
andhardware

*Can handlenticipated
andunanticipated internal
as well as external events
*ISRs or interrupt handlers
are memory resident
*Use numbers to identify
an interrupt service
*FLAGS register is

saved automatically

Procedures

*Can only be initiated by
software

*Can handlanticipated
events that are coded into
the program

*Typically loaded along
with the program

*Use meaningful names to
indicate their function

*Do not save the FLAGS register

39

Software interrupts

Software interrupts can hbésed to call commonly used procedures from many
different programs.

BIOS procedures.

The ROMBIOS (Basic Input Output System) is part of the ROM llasentrol -
system of an IBM PC or compatible that bd#fines the architectureof the computer
to the software, angrovides the fundamental 1/O servicesthat are needed for the
operation of the computer.

The BIOS is actually a collection of proceduresclEgrocedure performs a
specific function such as reading a character fiteerkeyboard, writing characters to the
screen, or reading information from disk.

System 1/O procedures are called with the INT urtion.

There are twelve BIOS interrupts at all, fallingoirfive groups. For example with INT

10h you can access the video display services. iimtesrupt includes 20 subroutines.
Obviously, one of the INT 10h parameters is a dalae indicating which one of the

twenty subroutines is required. In this case, tieRegister is loaded with the number
of the subroutine. In addition, the AL, BX, CX abDX registers are used to provide the
parameters for this subroutine.

Example:INT 10h / AH = 0 - set video mode.

input:

AL = desired video mode.

these video modes are supported:

00h - text mode. 40x25. 16 colours. 8 pages.

03h - text mode. 80x25. 16 colours. 8 pages.

13h - graphical mode. 40x25. 256 colors. 320x200 pixels. 1 page.

INT 10h / AH = 2 - set cursor position.
input:

DH = row.

DL = column.

BH = page number (0..7).

mov dh, 10
mov dl, 20
mov bh, 0

mov ah, 2

int 10h

INT 10h / AH = OCh - change colour for a single pixel.

input:
AL = pixel colour
CX = column.
DX = row.
40

mov al, 13h

mov ah, 0

int 10h ; set graphics video mode.
mov al, 1100b

mov cx, 30

mov dx, 50

mov ah, Och

int 10h ; set pixel.

DOS interrupts

There are nine DOS interrupt services.

Dec Hex Description
32 20 Program terminate: comertormal ending
33 21 Function-call umbrella interrupt
34 22 Terminate address
35 23 Break address
36 24 Critical error-handler address
37 25 Absolute disk read
38 26 Absolute disk write
39 27 Terminate-but-stay-resident
47 2F Print spool control (DOS-3 versions only)

INT 20h "Program Terminate"

This interrupt terminates the current process atarms control back to the parent
process. For example, if you run a com.file progréddT 20 terminates your program
and returns to DOS.

INT 21h

All of the DOS function calls are invoked by INT 21hdividual functions are
selected in the same way as BIOS functions, plathegfunction number in the AH-
Register.

INT 21h / AH=5 - output character to printer.

entry: DL = character to print, after execution AL = DL.
movah, 5
movdl, 'a’
int 21h

41

INT 21h / AH=9 - output of a string at DS:DX. String must be terminated by
I$I.

mov dx, offsetmsg

movah 9

int 21h

ret

msgdb "hello world $"

4. Control Unit
4.1. Control Unit basics

The main function of a computer is to execptegrams. The execution of a
program consists of a sequential executiomsfuctions. Each instruction is executed
during an instruction cycle made up of shorter gales (fetch, execute, interrupt). The
performance of each subcycle involves one or mhogter operations, that is, micro-
operations.Micro-operations are functional or atomic operations of a processa
transfer between registers, a transfer betweersteggi and external bus, a simple
arithmetic or logic operation (shift, add, negate).

The control unit is the main component that dirdtis system operations by
sending control signals to the data path. ThesaBsgontrol the flow of data within the
CPU and between the CPU and external units suofeasory and 1/O.

The control unit performs two basic tasks:

1. Sequencing- the control unit causes the processor to steudh a
series of micro-operations in the proper sequemhesed on the
program being executed

2. Execution — The control unit causes each micro-operatiorbé¢o
performed.
A general model of a control Unit:
Instruction System Bus
register
U Control signals
within CPU
—
Flags Control signals from
— ™ Control |, systembus
Unit [
Control signals to
Clock system bus N
— '>

42

Inputs:

1. Clock — One or several micro-operations are exelcateone clock pulse. It is
called a processor cycle.

2. Instruction register — The opcode of the currestrirction is used to determine
which micro-operations to perform.

3. Flags — Are needed to determine the status of theepsor and outcome of
previous ALU operations.

4. Control signals from Control Bus — interrupt sighacknowledgments.

Outputs:

1. Control signals within the CPU — These are two $ypilkrose that cause data to be
moved from one register to another and those tletivades specific CPU
functions.

2. Control signals to Control Bus — also two typestoal signals to memory and
control signals to I/O system.

There are mainly two different types of control teni hardwired and

microprogrammed.

Hardwired Control Unit

In hardwired control, fixed logic circuits that cespond directly to the Boolean
expressions are used to generate the control signal

Advantage: Hardwired control is very fast and CU has a srsiak.

Disadvantage: Hardwired control could be very expensive and daraped for
complex systems. It will require a redesign of ddire systems in the case of any
change (ex. add a new instruction).

General structure:

Instruction register

i
lo l1 n

Timing
Clock generator | T1, Control unit Flags
— «
Tm

lm l c2 iCk
Control signals

According to the opcode of the instruction, the @Ul generate a different
combination of control signals. To simplify the @dgjic, there should be a unique logic

43

input for each opcode. This function is performgdaldecoder which takes an encoded
input and produces a single output.

The CU emits different control signals at differdimhe moments (TO, T1...)
within a single instruction cycle. Timing generatsra counter of a clock pulses. The
period of the clock pulses must be long enoughltavahe propagation of signals along
data paths and through processor circuitry. Atehd of the instruction cycle, the CU
must reinitialize the counter to TO.

In a hardwired implementation a CU produces ougputrol signals as a function
of its input signals.

Let consider a simple example: Assume that theuoson set of a machine has
the three instructions: x, y, and z; and A, B, CEDF, G, and H are signals that should
be generated for the three instructions at theetbteps TO, T1, and T2.

Step Instruction X Instruction Y Instruction Z
TO D,B,E F.H,G EH

T1 C,AH G D,AC

T2 G,C B,C -

The Boolean expressions for control signals A,i8l @ can be obtained as follows:
A=X*T1+Z*T1=(X+2Z2)*T1

B=X*TO+Y*T2

C=X*T1+ Z*T1+ X*T2+Y*T2=(X+2)*T1+ (X+Y)*T2

The logic circuits for these control signals:

: o) .

Sl B

4.3. Microprogrammed Control Unit

The idea of microprogrammed control units was mhiied by M. V. Wilkes in
the early 1950s. Microprogramming was motivated thg desire to reduce the
complexities involved with hardwired control.

An instruction is implemented using a set of mioperations. Associated with
each micro-operation is a set of control lines timaist be activated to carry out the

44

corresponding microoperation. The idea of micropmagned control is to store the
control signals associated with the implementatadfna certain instruction as a
microprogram in a special memory called a contrefmary (CM).

Advantage: It is flexible and could adapt easily to changeshie system design.
We can easily add new instructions without changiaglware.

Disadvantage: It is slower than a harwired control unit of comgdale technology.

Microprogramming is the dominant technique in Cl@Gcessors, hardwired CU
—in RISC processors.

A microprogram is written in a microprogramming language and &i8s0f a
seguence of microinstructions.

A microinstruction is a vector of bits, where each bit is a contngnal,
condition code and the address of the next michaioson.

Microinstructions can be classified lagrizontal or vertical.

Individual bits in horizontal microinstructions cespond to individual control
lines. If the control bit is equal to 1 — the cahiine is turned on, if the bit is equal to 0
— the control line is leaved of. If the conditionde is false — the next instruction in the
seqguence is executed. If the condition is truee-atidress of the next microinstruction
to be executed is indicated in the address field.

Microinstruction
L address
Internal CPU Condition code

unconditional
control System Bus zero

signals control signals overflow

Horizontal microinstructions are long and allow mmaxm parallelism since each
bit controls a single control line.

In vertical microinstructions, control lines areded into specific fields within a
microinstruction. Decoders are needed to map a figl k bits to 8 possible
combinations of control lines. Because of the emgpdvertical microinstructions are
much shorter than horizontal ones. Control linesoded in the same field cannot be
activated simultaneously. Therefore, vertical mistructions allow only limited
parallelism.

Field A Field B
3 bits 2 bits
DC 1:8 DC 1:4

I ERR

A7

45

The control memory contains a program that dessrthe behavior of the control
unit. So, the control unit is implemented by exaauthat program.

The CU functions as follows (during one clock)is

1. To execute an instruction, the Sequencing Logict Wenerates a READ
command to the Control Memory.

2. The word whose address is specified in the Cowtdolress Register is writes into
the Control Data Register.

3. The content of the Control Data Register generatagrol signals and next
address information for the Sequencing Logic Unit.

4. The Sequencing Logic Unit loads a new address th&o Control Address
Register based on the next address information tfemControl Data Register
and the ALU flags.

Microprogrammed CU structure:
Instruction Rg

Next address control

| T
Cu |
Flags | |
S i | dd
Cﬁ equ%;?:::mg |Contro address Rg | |
Read |
Control
memory |
|
|
|

|
|
|
| . Control Data Rg
|
|

Control signals Control S|gnals
within CPU to System Bus

5. Memory System
5.1. Memory hierarchy

Computer memory is organised into a hierarchy.uichsa hierarchy, larger and
slower memories are used to supplement smallerfasidr ones. At the highest level
(closest to the processor) are the processor eegistiext comes one or more levels of
cache, denoted L1, L2, etc. Then comes main memfliyof these are considered

46

internal to the computer system. The hierarchy inaes with auxiliary (external)
memory — fixed hard disk and one or more level®wehat consisting of removable

media such as optical disks and tape.
A

Speed CPU Registers Latency

Cache

/ Main Memory \

Auxiliary Memory
(fixed hard disk, v
removable disks and tapes)

Capacity (megabytes)

-
-} -

The memory hierarchy can be characterized by a ruwfiparameters:

1. Access typésequential, direct, random and associative)

- Sequential accesdlt is used in tape units. Memory is organized iatuts of
data, called records. Access must be done in afigplcear sequence. Example: if
access to location 100 takes 500 ns, and if a catige access to location 101 takes 505
ns, then it is expected that an access to loc&@thmay take 1500 ns. This is because
the memory has to cycle through locations 100 @ 86th each location requiring 5 ns.

- Direct accesslt is used in disk units. Individual blocks haveir@que address
based on physical location. Access is done by daecess of a block and sequential
searching to reach the final location.

- Random accesslt is used in main memory and some cache syst&iash
addressable location has a unique address. The tinaccess a given location is
constant.

- Associative accesdt is used in some cache memories. It is a randooess
type of memory in which a word is stored and regttbased on a portion of its content
rather than its address. The access time is alssiaat.

2. Capacity Is typically expressed in terms of bytes or wqidsB, 1MB, 1GB).

3. Access time (latency)Yhe time it takes to perform a write or read operatit
represents an interval between the request forndbon and the access to the
first bit of that information.

4. Cycle timelt consists of the access time plus any additiagmaé required
before a second access can commence.

47

Cycle time
- . >
Access time
- -
Sgarch Tra}nsfer Wait time |
time time Tlme>

5. Bandwidth (Transfer rate).This is the rate at which data can be transferred
into or out a memory unit. It is equal to 1/cyciee (words per second) or
wi/cycle time.

6. Cost(is usually specified in money per megabytes).

Memory hierarchy parameters

Access type Capacity Latency Bandwidth Cost/MB
CPU registers Random 64-1024 bytes 1-10 ns System clock High
rate
Cache memory Random 8-512 KB 15-20 ns 10-20MB/s $500
Main memory Random 16-512 MB 30-50 ns ~-2MB/s $20-50
Disk memory Direct 1-20GB 10-30 ms 1-2 MB /s $0.25
Tape memory Sequential 1-20TB 30-10000 ms 1-2MB/s $0.025

A variety of physical types of memory have beerplyed. The most common
today are semiconductor memory, magnetic, usedlisk and tape, and optical and
magneto-optical.

According to physical characteristics memory can b

1. Volatile — information is lost when electrical powse switched off (RAM).

2. Non-volatile — information once recorded remainthait deterioration until it

Is changed (ROM).

The effectiveness of a memory hierarchy duringagm@m execution depends on
the principle calledocality of referencethat is, within a given period of time, programs
tend to reference a relatively confined area of omepeatedly. So, according to this
principle, the most frequently used informationtesnporarily moved into the faster
memory.

There exist two forms of localitgpatial and temporal locality

Spatial locality refers to the phenomenon that when a given addrassbeen
referenced, it is most likely that addresses rteaillibe referenced within a short period
of time, for example, consecutive instructions straight-line program.

48

Temporal locality on the other hand, refers to the phenomenon dhae a
particular memory item has been referenced, itastrlikely that it will be referenced
next, for example, an instruction in a program loop

The sequence of events that takes place when tlieegsor makes a request for an
item is as follows. First, the item is sought i thrst memory level of the memory
hierarchy. The probability of finding the requesitn in the first level is callethe hit
ratio. The probability of not finding (missing) the rexgtied item in the first level of the
memory hierarchy is called thmiss ratia When the requested item causes a “miss,” it
is sought in the next subsequent memory level.

5.2. Semiconductor memory types

The main memory of a computer system should beeastigh to not degrade the
performance of the system. To achieve this, thacserductor type memories are used
as main memory.

read-only memory -ROM

read-write memory or random access memory - RAM

Among them ROM is a non-volatile memory type. theey retain their contents
when the power goes off. On the other hand, RAM tgpvices loss their contents when
the power goes off, because of the technology used.

ROM memory

In ROM, the data are permanently stored. They eaédadble in many forms.

ROM. Its content cannot be erasable.

PROM (Programmable read only memory. Once prograinthey cannot be

erased.

EPROM (erasable programmable ROM). Erasable bgwtilet lights.

EEPROM (byte-level electrically erasable programi@m&OM).

Flash memory (block-level electrically erasablegpamnmable ROM).

RAM memory

static random access memory (SRAM)

dynamic random access memory (DRAM)

In a SRAM binary values are stored using traditiofip-flops (6 transistors
configuration).

A DRAM is made with cells that store data as chawgecapacitors. Dynamic
memory depends on storing logic values using aatapaogether with one transistor
that acts as a switch. The use of dynamic memasisléo saving in chip area. The
presence or absence of charge on a capacitoreipiated as a binary 1 or 0. Because
capacitors have a natural tendency to dischargeANIXRrequire periodic charge
refreshing by a special circuit.

49

SRAM and DRAM are both volatile: power must be amndusly supplied to the
memory. DRAM cell is smaller than SRAM cell. Thus,DRAM is denser and less
expensive, but it requires the supporting refrestuitry. Thus, DRAMs are used in
large memory requirements. SRAMs are generallyefastan DRAMs. They are used
and in cache memories.

5.3. Memory chip organization

A typical pin configuration of a memory chip comain address input lines to
select 2rows, k output (data) lines, and control lines.

Each memory device has at least @h@ select(CS) or chip enable(CE) or
select (S) pin that enables the memory device. This enaléesl and/or write
operations. If more than one is present, then altrbe O in order to perform a read or
write.

Each memory device has at least one control pin.R€oMs, anoutput enable
(OE) orgate(G) is present. Th@©E pin enables and disables a set of 3-state buffers.
For RAMSs, aread-write (R/W) or write enable(wWE) and read enable(OE) are
present. For dual control pin devices, it must bkl true that both are not O at the same
time.

Gieneric pin configuration:

Write

.-"\..::. l"l.] l"-.‘\‘ lI|-"I|‘c'rE

Read

OFE

Select

Output/Input-outpul connection

A conceptual internal organization of a SRAM chip:

/ WO
AO W1
Al |
DC
An-1
\ Ww2n-1
*_ N |
— | Control
CS circuit —
] Data lines
WE

If one decoder is used, the organization is calleeldimensional.
50

Cells belonging to a given row can be assumedrta fbe bits of a given memory
word. Address lines A, Ano, ...,A1, Ag are used as inputs to the address decoder in
order to generate the word select lines WW,", ..., Wi, W,. A given word select line
is common to all memory cells in the same row. A given time, the address decoder
activates only one word select line. A word selee is used to enable all cells in a row
for read or write. Data (bit) lines are used touin@r output the contents of cells.

Example: A 1Kx4 memory chip indicates that thepdas 1K rows of cells and in
each row there are 4 cells. The total number dbdsl4K. To address 1KZ2rows,
log,2'°=10 addresses are needed. However, this may ribttdethe best utilization of
the chip area.

Another possible organization of this memory cethg is as a 64x64, that is, to
organize the array in the form of 64 rows, eachs=timg of 64 cells. In this case, six
address lines (forming what is called the row adlslrevill be needed in order to select
one of the 64 rows. The remaining four addressl{called the column address) will be
used to select the appropriate 4 bits among thiéadle 64 bits constituting a row. For
this four 16-to-1 MUX are used.

w‘fl
Ag
0
W,
.'1.|
—
W,
A » 64 x 64 memory cell array
L] -
.'1._-1
—
Wz
4 & A A &

16 to 1 multiplexers

D3N

LS
Yy¥YY¥YyYY

51

Memory subsystems

An important factor in the design of the main meynsubsystem is the required
number of memory chips. The available per chip mgnuapacity can be a limiting
factor in designing memory subsystems.

Consider, for example, the design of a 16 KB maemuory subsystem using

4Kx4 memory chips. The number of required chips is:
%X_S:S
4K 4

It should be noted that the number of address leesled to a memory subsystem
depends on the number of data lines.

1) If the width of the data bus is 8, the numbeaddress lines required for the 16
KB system is 14 (16KB=221°=2'9),

2) If the width of the data bus is 16, the numbleaddress lines required for the
16 KB=8 KW system is 13 (8 KW=2210=2"9),

In the first case, the memory subsystem can bexgechin 4 rows, each having
two chips. The least significant 12 address lindsA41 are used to address each
memory chip, which has 12 address lines. The higlerotwo address lines A12-A13
are used as inputs to a 2-4 decoder in order tergen4 enable lines, each is connected
to the CE line of the two chips constituting a réMso, to each memory chip a control
signal R/W (for memory read and memory write operationspisnected.

R/W
—_—
7 = 6 =)
A A
Al3 DC
Al12 1 5 [4 =
— A A
CE | R'W | Mode 3 = 2 =
0 X Tri-state A A
1 | Read
. i] : 0 Write 1 k= 0 k=l
=don’t care \ V
Tri-state = high impedance A_ Dby A D3-DO
AO-A11

In the second case, the memory subsystem candiggad in 2 rows, each having
four chips. The least significant 12 address lidésA1l are used to address each
memory chip. The high-order address line A12 iglis®input to a 1-2 decoder in order
to generate 2 enable lines, each is connecteatGEhline of the four chips constituting
a row.

52

R/W

—
=7 H P e QIS @I 4
)) I)
A12— PC s o |H 2 | 1l ok
)) ol |
D15-D12 D11-D18 D4-D7 D3-D0
AO-A11

Cache memory
Cache memory is a small high-speed memory, situatésleen the processor and
the main memory in which the information expectedé used more frequently by the
CPU is kept (the term cache means a safe pladedmy or storing things).

Word Block
transfer transfer)
CPU Main
——— Cache
3 Memory

The structure of a cache-memory system

So, at any given time some active portion of thenmaemory is duplicated in the
cache. Therefore, when the processor makes a tefprea memory reference, the
request is first sought in the cache. If the reguesresponds to an element that is
currently residing in the cache, we call thaiaghe hit. If the request corresponds to an
element that is not currently in the cache, we ttet acache miss After a cache miss,

a block of elements is brought from the main memtwycache. Because of the
phenomenon dbcality of referencewe can expect that the next requested element will
be residing in the neighboring locality of the @mtrrequested element.

A request for accessing a memory element is madéhéyprocessor through
issuing the logic address of the requested eleniemhay correspond to that of an
element that exists currently in the cache (cadhedtherwise, it may correspond to an
element that is currently residing in the main mgmdherefore, address translation has
to be made in order to determine where the reqdiesdEment is. This is one of the
functions performed by the memory management ().

53

Secondary

Memory Management Level
Unit (MMU)
P
Miss —
Translation Block
Function .
System ;EIdrcs:? 11\?[.
Address —lp rimary Memory
— | g
4 Primary Level
Hit

The requested element

The system address represents the address issudbebgrocessor for the
requested element. This address is used by ansadttenslation function inside the
MMU. If after translation the address is found Ire tcache, then the element will be
made available to the processor. If the elemenbisurrently in the cache, then it will
be brought (as part of a block) from the main mgnaod placed in the cache

There are three main different organization tecesgused for cache memory.

1. Direct mapping

2. Associative Mapping

3. Set-Associative Mapping.

These techniques differ in two main aspects:

- The criterion used to place, in the cache, annmmng block from the main memory.
- The criterion used to replace a cache block bywemming block (on cache full).

The main memory consists of up tbd&idressable words, with each word having
a unique n-bit address. For mapping purposesntbisory is considered to consist of a
number of fixed-length blocks of B words each. Tisathere are M=2B blocks. Cache
consists of C lines of B words each and the nurobénes is considerably less than the
number of main memory blocks (C<<M). Because tlage=more blocks than lines, an
individual line cannot be uniquely dedicated to atigular block. Thus, each line
includes a tag (eticheta) that identifies whichckl@s currently being stored. The tag is
usually a portion of the main memory address.

Direct mapping

54

According to the direct-mapping technique, eachclblof main memory is
mapped into only one possible cache block.

Consider a main memory with M blocks with B wordseiach. If cache contains
C lines, then memory is organized as a two-dimeradi@rray with C lines and L
columns. C*L=M. So, L memory blocks from one linancbe mapped in one cache
block.

Each main memory address is divided into threediel

< Main Memory Address

A

Tag Field Cache Block Field Word Field

The word field identifies a unique word within abk. It contains b=logB bits.

The cache block field specifies one cache blocle]lilt contains c= lggC bits.

The tag field specifies one block in the main mgmore. It contains | = logL bits,
where L=M/C

The total number of bits in the main memory addredeg2 (B*M).

Consider, for example, the case of a main memonsisting of M=4K=22
blocks, a cache memory consisting of C=128bfcks, and a block size of B=16-2
words (bytes). The main memory size 1&2*=2'°=64KB.

The division of the main memory and the cache alingrto the direct-mapped
cache technique: Main memory array: 128 x 32.

Tag Cache Main Memory
3 0| 384 0 | 128 | 256 | 384 3968
1 1 129 1 | 129 | 257 | 385
0 2 2 | 130] 258 | 386
126
31 127 | 4095 127 | 255 | 383 4095
0 1 2 3 31

For example, main memory blocks 0, 128, 256, 384, 3968 map to cache line 0.

Word field: b=log 16 = 4 bits

Cache Block field c=log128 = 7 bits

Tag field I= log L= log, (M/C) = log, (2'%/27) = 5 bits

The total number of bits in the main memory address

n = log (M*B) = log, (22 *2*%) =16 bits.

The protocol used by the MMU to satisfy a requestienby the processor for
accessing a given element.
1. Use the Block field to determine the cache bldwkt should contain the element
requested by the processor.

55

2. Check the corresponding Tag memory to see whétleee is a match between its
content and that of the Tag field. A match meaonache hit.

3. Among the elements contained in the cache bltuk,targeted element can be
selected using the Word field.

4. If in step 2, no match is found, then this idés a cache miss. Therefore, the
required block has to be brought from the main ngnaeposited in the cache, and the
targeted element is made available to the proce3$w cache Tag memory and the
cache block memory have to be updated accordingly.

The direct mapping technique is simple and inexpen® implement. Its main
disadvantage is that there is a fixed cache locdto any given block. Consider, for
example, the sequence of requests made by thessmc®r elements held in the main
memory blocks 1, 9, 17, 25. Consider also thatctehe size is 8 blocks. It is clear that
all the above blocks map to cache block numbemhgréfore, these blocks will compete
for the same cache block despite the fact thatetmaining 7 cache blocks are not used.

Memory address Cache Main memory

_— Tag Data
Tag | Cache block | Word |

N

Compare >|

Miss Hit | k
b ‘ Block

Word

Associative Mapping
According to this technique, an incoming main megmbolock can be placed in

any available cache block.
Therefore, the address issued by the processorordgdave two fields. These

are the Tag and Word fields.

< Main Memory Address >

44— Tag Field ————»4—Word Field—»

The first uniquely identifies the block while reisig in the cache.
56

The second field identifies the element within bleck that is requested by the
processor.

To determine whether a block is in the cache, thehe control logic must
examine every block’s tag in parallel. Note thatfiedd in the address corresponds to
cache block number, so that the number of blodkéncache is not determined by the
address format.

The length, in bits, of each of the fields:

1. Word field b= log B, where B is the size of the block in words.
2. Tag field m= logM, where M is the size of the main memory in bkck
3. The number of bits in the main memory addreskg=B * M)

Let's compute these parameters for a memory systaeming the following
specification: size of the main memory is 4K blqckze of the cache is 128 blocks, and
the block size is 16 words.

Word field b= log B = log, 16= log 2* = 4 bits
Tag field m = log M = log, 4K= log, 2*2 = 12 bits
The number of bits in the main memory address ntbtyM)=log,(2* * 23 = 16 bits.

The protocol used by the MMU to satisfy a requeatienby the processor for
accessing a given element.
1. Use the Tag field to search in the Tag memorafmatch with any of the tags stored.
2. A match in the tag memory indicates a cache hit.
3. Among the elements contained in the cache bltok, targeted element can be
selected using the Word field.
4. If in step 2, no match is found, then this iadés a cache miss. Therefore, the
required block has to be brought from the main nmgmdeposited in the first available
cache block, and the targeted element (word) isenaadilable to the processor. The
cache Tag memory and the cache block memory have tpdated accordingly.

57

Memory address Cache Main memory

| Tag Data

Tag | Word —|

l%j |
1
T > Block
Compare
Miss - I
Hit 1 Word

The main advantage of the associative-mapping tgohns the efficient use of
the cache. Any unoccupied cache block can pothntiee used to receive those
incoming main memory blocks.

The main disadvantage of the technique, howevetheshardware overhead
required to perform the associative (parallel) seaonducted in order to find a match
between the tag field and the tag memory.

Set-Associative Mapping

A set-associative mapping is a compromise betweeectdand associative
mapping. According to set-associative mapping teghe) the cache is divided into a
number of sets. An incoming block maps to any blatkithe assigned cache set.
Therefore, the address issued by the processaorited into three distinct fields. These
are the Tag, Set, and Word fields.

The Set field is used to uniquely identify the sfiecache set that ideally should
hold the targeted block. The Tag field uniquelyniifges the targeted block within the
determined set. The Word field identifies the eletm@vord) within the block that is
requested by the processor.

< Main Memory Address >

Tag Field Set Field Word Field

The length, in bits, of each of the fields is giu®n

1. Word field b= log B, where B is the size of the block in words.
58

2. Set field s= logS, where S is the number of sets in the cache.

3. Tag field m= log (M/S), where M is the size of the main memory liocks.

S = C/Bs, where C is the number of cache blocksBand the number of blocks per set.
4. The number of bits in the main memory addressay, (B * M).

Example. Compute the above three parameters (\WRet], and Tag) for a memory
system having the following specification: sizetb& main memory M is 4K blocks,
size of the cache C is 128 blocks, and the blaok Biis 16 words. One cache set Bs has
four blocks.

Word field b= log B = log, 16= log 2* = 4 bits

Set field s=log(128/4) =log 32 =5

Tag field m = log (M/S) = log 2'%2°= log, 2'= 7 bits

The number of bits in the main memory address ngbtyM)=log,(2* * 23 = 16 bits.

The protocol used by the MMU to satisfy a requeatlenby the processor for
accessing a given element.
1. Use the Set field (5 bits) to determine (dingctihe specified set (1 of the 32 sets).
2. Use the Tag field to find a match with any of {four) blocks in the determined set.
A match in the tag memory indicates that the sptifet determined in step 1 is
currently holding the targeted block, that is, ahaahit.
3. Among the 16 words (elements) contained in &the block, the requested word is
selected using a selector with the help of the Wietd.
4. If in step 2, no match is found, then this iadés a cache miss. Therefore, the
required block has to be brought from the main nrgmo

Replacement Technigues and Write Policies

When a new block is brought into the cache, onthefexisting blocks must be
replaced. For direct mapping, there is only onesides line for any particular block and
no choice is possible. For the associative an@s&tciative techniques, a replacement
algorithm is needed.

A number of replacement techniques can be used:

1. A randomly selected block (random selection)As the name indicates,
random selection of a cache block for replacememone based on the output of the
random number generator at the time of replacenidms. technique is simple and does
not require much additional overhead. Howevennign shortcoming is that it does not
take locality into consideration.

2. The block that has been in the cache the longefitt-in, first- out, FIFO).
This technique requires keeping track of the Ifetiof a cache block. Therefore, it is
not as simple as the random selection techniqueitirely, the FIFO technique is
reasonable to use for straight-line programs wloaaity of reference is not of concern.

59

3. The block that has been used the least while ragydin the cache (least
recently used, LRUYhe LRU technique is the most effective. This ixewese the
history of block usage (as the criterion for replaent) is taken into consideration. The
LRU algorithm requires the use of a cache controigcuit that keeps track of
references to all blocks while residing in the @achhis can be achieved using counters.
In this case each cache block is assigned a couwspen a cache hit, the counter of the
corresponding block is set to 0, all other countemsing a smaller value than the
original value in the counter of the hit block aneremented by 1, and all counters
having a larger value are kept unchanged. Uporchecaiiss, the block whose counter
is showing the maximum value is chosen for replagdnthe counter is set to 0, and all
other counters are incremented by 1.

Cache Write Policies

There are essentially two possible write policipsrua cache hit. These are the
write-through and thewrite-back.

In the write-through policy, every write operatiomthe cache is repeated to the
main memory at the same time.

In the write-back policy, all writes are made te ttache.

A write to the main memory is postponed (amanatéi) a replacement is needed.
Every cache block is assigned a bit, called they ¢it, to indicate that at least one write
operation has been made to the block while resiglirtbe cache. At replacement time,
the dirty bit is checked; if it is set, then th@dk is written back to the main memory,
otherwise, it is simply overwritten by the incomiblgpck.

The write-through policy maintains coherence betwibe cache blocks and their
counterparts in the main memory at the expensbeo€xktra time needed to write to the
main memory. This leads to an increase in the geeazcess time. On the other hand,
the write-back policy eliminates the increase ie tiverage access time. However,
coherence is only guaranteed at the time of repiaocé

Virtual memory

A virtual memory system attempts to optimize the o§the main memory (the
higher speed portion) with the hard disk (the lowpeed portion). In effect, virtual
memory is a technique for using the secondary géota extend the apparent limited
size of the physical memory. It is usually the ctss the available physical memory
space will not be enough to host all the parts gizan active program.

The principles employed in the virtual memory daseye the same as those
employed in the cache memory. The most relevamcyple is that of keeping active
segments in the high-speed main memory and mowiagtive segments back to the
hard disk.

The address issued by the processor in order tesaca given word does not
correspond to the physical memory space. Therekueh address is called a virtual

60

(logical) address. The memory management unit (MM$&J))responsible for the
translation of virtual addresses to their corresiion physical addresses.

Three address translation techniques can be ig&htifhese are:

- direct-mapping;

- associative- mapping;

- set-associative-mapping.

The logical addresses can be organized in thre@snod

- fixed length pages (from 2K to 16K bytes);

- variable length segments (<64KB);

- paged segmentation (one segment contains a fgaspa

In all these techniques, the translation from labi@ddress to physical is done
using a translation table, stored in the main mgmor

Address translation using pages

Direct-mapping

In this case, the virtual address issued by thegssor is divided into two fields:
the virtual page number and the offset fieldshd# tumber of bits in the virtual page
number field is N, then the number of entries m plage table will be 2N.

The virtual page number field is used to directtidess an entry in the page
table. If the corresponding page is valid (as iatid by the valid bit), then the contents
of the specified page table entry will correspamthie physical page address in the main
memory. The latter is then extracted and concatenaith the offset field in order to
form the physical address of the word requestetheyprocessor. If, on the other hand,
the specified entry in the page table does notamorat valid physical page number, then
this represents a page fault. In this case, the MillUhave to bring the corresponding
page from the hard disk, load it into the main mgmand indicate the validity of the
page.

Example. Suppose that the virtual address conthndits. One page has?2
words. Four most significant bits will specify ook16 pages and last 12 bits — the word
address in the page.

61

MNumér
pagini

1000/000000000001 Adresa virtuala

e,

-
Adresa
tabel

v

MNumar linie

\
\
/ /
|II
/
/
/
/
!

4
0000 0 Bit \
0001 0 prezenti 5
0010 | 11 | 1 | Adresa fizica
0011 | 00 | 1 (real) de memorie
Tabel 0100 0 /—’_r_‘* l principala
Pﬂf”ﬂ 101] 01 | } | 10/000000000001
c omo[o - . -
memorie ;4 0 N
woo | 10l |1 .---/ T
1001 5 / Memoria principali
1010 0 00 BLOCEQ
1011 0 k\\'m_,_q_ 01 BLOCK 1
1100 0 0 BLOCK 2
1101 0 11 BLOCK 3
1110 0
1111 0

The main advantage of the direct-mapping techniguts simplicity measured in
terms of the direct addressing of the page tabtaesn Its main disadvantage is the
expected large size of the page table and a letnpity entries in it.

Associative Mapping

The virtual address issued by the processor isledvinto two fields: the virtual
page number and the offset fields. However, the palle could be far shorter.

Every entry in the page table is divided into twartp: the virtual page number
and the physical page number. A match is searchesb¢iatively) between the virtual
page number field of the address and the virtugepaumbers stored in the page table.
If a match is found, the corresponding physicalgpagmber stored in the page table is
extracted and is concatenated with the offset fialdrder to generate the physical
address of the word requested by the processor.

If a match could not be found, then this represanpgge fault. In this case, the
MMU will have to bring the corresponding page frdm hard disk, load it into the main
memory, and indicate the validity of the page.

62

Adres3 logica

A

r _ ™
MNumir pagina
i S ™y
| 1000 | Numir linie
| 1 | oo |

0010 11

o011 00

0101 01

1000 10
N A, : /
Numér pagini .'E\Iumﬁr bloc

The main advantage of the associative-mapping tgolns the expected shorter
page table (compared to the direct-mapping tecleiqequired for the translation
process. Its main disadvantage is the associatiaels that requires the use of an added
hardware overhead.

A possible compromise between the complexity ofdlsociative mapping and
the simplicity of the direct mapping is the setesrsstive mapping technique.

Set-Associative Mapping

In this case, the virtual address issued by thegwsor is divided into three fields:
the tag, the index, and the offset. The page tabkxl in set-associative mapping is
divided into sets, each consisting of a numberntfies. Each entry in the page table
consists of a tag and the corresponding physiag padress.

Similar to direct mapping, the index field is udeddirectly determine the set in
which a search should be conducted. If the numbleit®in the index field is S, then the
number of sets in the page table should heORce the set is determined, then a search
(similar to associative mapping) is conducted tdcimahe tag field with all entries in
that specific set. If a match is found, then theresponding physical page address is
extracted and concatenated with the offset fieldrder to generate the physical address
of the word requested by the processor.

Translation Look-Aside Buffer (TLB)

In most modern computer systems a copy of a snoatigm of the page table is
kept on the processor chip. This portion consiste@page table entries that correspond
to the most recently accessed pages. This smdlbpas kept in the translation look-
aside buffer (TLB) cache. A search in the TLB pdEethat in the page table. A hit in
the TLB will result in the generation of the phydi@address of the word requested by

63

the processor, thus saving the extra main memargsacrequired to access the page
table. It should be noted that a miss on the TLBoisequivalent to a page fault.

Segment Address Translation

In order to support segmentation, the address ds&yethe processor should
consist of a segment number (base) and a displadte(oe an offset) within the
segment.

Address translation is performed directly via amnsegt table. The starting address
of the targeted segment is obtained by addingeéhgenent number to the contents of the
segment table pointer. One important content of gagment table is the physical
segment base address. Adding the latter to thestoffelds the required physical
address.

Segment Number Offset
Segment Tahle
Displacement
¥ v
.,*’f) > P
\x_l__ J Physical Segment Base Address _Hx Ej'

| Physical Address |

Paged Segmentation

Both segmentation and paging are combined in mggems. Each segment is
divided into a number of equal sized pages. Thechast of transfer of data between
the main memory and the disk is the page, thatiany given time, the main memory
may consist of pages from various segments. Indése, the virtual address is divided
into a segment number, a page number, and dispéatewithin the page. Address
translation is the same as explained above exhbapthe physical segment base address
obtained from the segment table is now added tovitteal page number in order to
obtain the appropriate entry in the page table. dinput of the page table is the page
physical address, which when concatenated withwibiel field of the virtual address
results in the physical address.

64

Segment Number

Displacement

Segment Table

Virtual Page Number

Offset |

Physical Address

4@—b Physical Segment Base Address 4@

Page Table

—

Y

 Physical Address

65

Input—Output system
Basic concepts

Input—output (I/O) system is the interface to thetswle world — external
(peripheral) devices. Peripheral devices cannatdmmected directly to the system bus,
only through I/O interface circuits — I/O modul&he reasons are:

1. There are a wide variety of peripherals withauas methods of operation;

2. The data transfer rate is very different (thteadeansfer rate of a keyboard is
about 10 characters (bytes)/second, a scannerecahdata at a rate of about 200,000
characters/second, a laser printer can output @ataa rate of about 100,000
characters/second, a graphic display can outpwt data rate of about 30,000,000
characters/second.);

3. Peripherals often use different data formatsvamd lengths than the computer
to which they are attached.

The functions of an 1/0O module:

1. Control and timing to coordinate the flow offi@between internal resources
and external devices.

The control of the transfer of data from the peeiathto the processor:

- The processor check the status of the device

- The I/O module returns the status of the device

- If the device is ready to transmit, the processmuests transfer of data by
means of a command to the 1/O module

- The 1/0 module obtains a unit of data (8 or 1t§)drom the device

- The data are transferred from the I/O moduldé&oprocessor.

2. Communication between the processor and theceleiti involves commands
decoding, status information (common status sigag@sBUSY and READY), address
recognition and data exchange.

3. Data buffering. The transfer rate of the prooessid peripheral is different. So
data are first stored in special input and outpgtsters (ports).

Interface to Interface to
system bus external device
»|
Data > Data Rg Eliizgzl <> SData
lines o < tatus
»| Status/Control Rg Interface
Logic » Control
Address -
lines e}
Logic External | gl Data
Controle > <« Device 1| status
lines Interface
Logic » Control

Block diagram of an I/O module
66

In a typical computer system, there is a numbenmiit or output registers (ports),
each belonging to a specific input or output device

There are two arrangements to address input apdioggisters.

1. Shared I/0O. 1/0O devices are assigned particular addresselgtesbofrom the
address space assigned to the memory.

The main advantage of the shared I/O arrangemdhetiseparation between the
memory address space and that of the I/O devitesdin disadvantage is the need to
have special input and output instructions in tfec@ssor instruction set. The shared 1/0
arrangement is mostly adopted by Intel.

2. Memory-mapped 1/O. Input and output registers are addressed as memory
locations.

The main advantage of the memory-mapped I/O isutieeof the read and write
instructions of the processor to perform the imgmud output operations, respectively. It
eliminates the need for introducing special I/Gringtions. The main disadvantage - is
the need to reserve a certain part of the memodread space for addressing 1/O
devices, that is, a reduction in the available mgneddress space. The memory-
mapped I/O has been mostly adopted by Motorola.

I/O techniques of data transfer

There are three principal 1/0 techniques of datadfer:
-programmed 1/Q in which I/O data transfer occurs under the cardgf the CPU
program;
-interrupt driven 1/O, in which 1/O data transfer is controlled by CPUeafthe
external interrupt request that initiates the tfans
-direct memory access (DMAj)n which a specialized 1/0O controller takes otrex
control of an I/O operation to move a large blotklata.

Programmed 1/O

I/O data transfer occurs under the control of@RJ program. The program must
check the device status, send a read or write cominaad transfer the data. The
processor must wait until the 1/0O operation is ctete If the processor is faster than the
I/O module, this is wasteful of the processor time.

The process of checking the status of I/O devioesrder to determine their
readiness for receiving and/or sending charadtecslledl/O polling.

To execute an I/O instruction, the processor issaresaddress, specifying the
particular I/0O module and external device, and/@clommand.

There are four types of commands:

. Control: Used to activate a peripheral and tell it whaddo

67

. Test: Used to test various status conditions assocusiitdan I/O module and its
peripherals (if it is powered on, if the I/O opévatis completed, if any errors occurred).

. Read: Causes the I/O module to obtain the word of datin fthe peripheral and
place it in an internal buffer — data register #reh to the data bus;

. Write: Causes the I/O module to take a word of data ftbendata bus and
transmit it to the peripheral.

A flowchart ofreading ina block of data:

) Issue read
command to I/O| CPU ->1/O

module

——
Read status of | /0 ->CPU
I/O module

Not ready

Read word from
I/O module

v

Write word into
memory

o K

Yes

/0 -> CPU

CPU -> memory

Next instruction
For each word that is read in, the processor mamsain in status checking cycle
until it determines that the word is available e tl/O module’s data register. This
flowchart highlights the main disadvantage of tteshnique: it is a time-consuming
process.

Interrupt-driven 1/O

With interrupt driven I/O, the processor issuesl@ command, continues to
execute other instructions, and is interruptedhgyltO module when the latter is ready
to exchange data with the processor.

I/O module actions.

68

For input, the 1/O module receives a READ commandifthe processor. Then it
proceeds to read data in from an associated peaipl@nce the data are in the module’s
data register, the module signals an interruph&@drocessor over a control line. The
module then waits until its data are requestedhaydrocessor. When the request is
made, the module places data on the data bus.

Processor’s actions.

The processor issues a READ command and then dgoema executes other
instructions. At the end of each instruction cydlee processor checks for interrupts.
When the interrupt occurs, the processor storesGHhAegister, current IP and CS
values into stack, disables further interrupts;Hes from the bus one byte representing
interrupt number, and jumps to Interrupt Servicaifihe (ISR). In this case, it reads the
word of data from the I/O module and stores it mnmory. It then restores the content of
the registers from stack and resumes execution.

A flowchart ofreading ina block of data:

N Issue read CPU ->1/0

command to l/O}--------- >
Do something else

module

Read status of | /O -> CPU
I/O module [®--------—-- Interrupt

Ready

Read word from
I/O module

Y

Write word into
memory

BN

Yes

/O -> CPU

CPU -> memory

Next instruction
Interrupt-driven 1/O is more efficient than progmaed I/O because it eliminates
needless waiting. However, it still consumes afqgirocessor time, because every word

69

of data that goes from memory to I/O module or weesa must pass through the
processor.

Bus arbitration in Interrupt-driven 1/0

Computers are provided with interrupt hardware bda in the form of
specialized interrupt lines to the processor. Thiegs are used to send interrupt signals
to the processor.

In the case of I/O, there exists more than onedié@ce. The processor should be
provided with a mechanism that enables it to hasuifelltaneous interrupt requests and
to recognize the interrupting device.

Two basic schemes can be implemented to achieveatbk.

1. daisy chain bus arbitration (DCBA);
2.independent source bus arbitratiaiiSBA).

According to the DCBA, 1/0 devices present theitermupt requests to the
interrupt request line INR (similar to the pollimgrangement). Upon recognizing the
arrival of an interrupt request, the processomugh a daisy chained grant line (GL),
sends its grant to the requesting device to startneunication with the processor. The
GL goes through all devices. If Device #1 has putquest, then it will hold the grant
signal and start communication with the proces$pon the other hand, Device #1 has
no interrupt request, it will pass the grant sigoadevice #2, which will repeat the same
procedure, and so on.

In the case of multiple requests, the DCBA arrargy@ngives highest priority to
the device physically nearer to the processor.

INR Line
Fy F Y Y

JOS52201

Grant Line

Device #1 —m Device #2 —W «+» —P Device #N

According to the ISBA, each I/O device has its aaterrupt request line, through
which it can send its interrupt request, indepehdéthe other devices.

Similarly, each 1/O device has its own grant litlough which it receives the
grant signal for its request such that it can stammunicating with the processor.

70

I/O device priority in the ISBA does not dependtba device location. A priority
arbitration circuitry is needed in order to dealhnsimultaneous interrupt requests.

INR,
o)
Device #N
>
GL #N
. .
7|2 |
‘E —
INR
s '®) 2
2| = < Device #2
- E ...
3 GL #2
iNR,
o
Device #1
GL #1

Direct memory access (DMA)

Programmed I/O and interrupt-driven 1/O suffer fromo drawbacks:

1. The I/O transfer rate is limited by the speed witiich the processor can test
and service a device.

2. The processor must execute a number of instructmrsach 1/O transfer.

When large volumes of data are to be moved, a meffieient technique is
required: direct memory access (DMA).

DMA involves an additional module on the system,lihe DMA controller. It
takes over the control of the system from the ssce

» Data register |

Data lines
- » Datacount |

»| Address register|

DMA request
-t

DMA acknowledge
>
IRterrupt Control logic
Read
_ >
Write
>

71

When the processor wishes to read or write a btdakata, it issues a command
to the DMA controller, by sending the following armation:

. If read or write is requested (read or write collines).

. The address of the 1/0O device (data lines).

. The starting location in memory to read or w(iteés stored in address register)

. The number of words to be read or written (semdlata lines and stored in the
data count register).

When the transfer is complete, The DMA controllends an interrupt signal to
the processor. Thus, the processor is involved ahlthe beginning and end of the
transfer.

CPU -> DMA
Issue read block

commandto /O — — —p .
module Do something

else

Read status of | DMA ->CPU
DMA controller [
Interrupt

Direct memory access data transfer can be performdulirst mode or single
cycle mode.

In burst mode, the DMA controller keeps controltieé bus until all the data has
been transferred to (from) memory from (to) thagiesral device. This mode of transfer
is needed for fast devices where data transferatame stopped until the entire transfer
is done.

In single-cycle mode (cycle stealing), the DMA gcotier relinquishes the bus
after each transfer of one data word. This minisitee amount of time that the DMA
controller keeps the CPU from controlling the bisit it requires that the bus
request/acknowledge sequence be performed for esiegfe transfer. This overhead
can result in a degradation of the performance.

The following steps summarize the DMA operations:

1. DMA controller initiates data transfer.

2. Data is moved (increasing the address in menanrg, reducing the count of
words to be moved).

3. When word count reaches zero, the DMA informes @PU of the termination
by means of an interrupt.

4. The CPU regains access to the memory bus.

A DMA controller may have multiple channels. Eadtannel has associated with
it an address register and a count register. Tt@ateia data transfer the device driver
sets up the DMA channel’s address and count regigtgether with the direction of the

72

data transfer, read or write. While the transfeéaisng place, the CPU is free to do other
things. When the transfer is complete, the CPUtertupted.

Direct memory access channels cannot be sharedebetdevice drivers. A
device driver must be able to determine which DM¥armel to use. Some devices have
a fixed DMA channel, while others are more flexjblghere the device driver can
simply pick a free DMA channel to use.

Bus Arbitration in DMA mode

Bus arbitration is needed to resolve conflicts wheo or more devices want to
become the bus master at the same time. In shibitizaéion is the process of selecting
the next bus master from among multiple candidates.

Centralized Arbitration

In centralized arbitration schemes, a single arbgeused to select the next
master. A simple form of centralized arbitratiomsis bus request line, a bus grant line,
and a bus busy line. Each of these lines is shHaygabtential masters, which are daisy-
chained in a cascade.

D] p " Bus Grant p y
) otentia otentia otentia
Master | > Master2 | o Master n
A A A
Central
Bus Bus Request
Arbiter t——— T 71—
Bus Busy

Each of the potential masters can submit a busesg@i any time.
Instead of using shared request and grant linekipheubus request and bus grant
lines can be used.

73

Reg-1

q4— | Potential Potential Potential
- | Master | Master 2 —» Master n
Grant-1 F Y A F 3
Reqg-2
Central
Bus .

A rbui :er Grant-2 Reg-n Grant-n

¢
Bus Busy

Decentralized Arbitration

In decentralized arbitration schemes, priority-lleaebitration is usually used in a
distributed fashion. Each potential master hasiguenarbitration number, which is used
in resolving conflicts when multiple requests anbraitted. For example, a conflict can
always be resolved in favor of the device with thighest arbitration number. The
guestion now is how to determine which device hashighest arbitration number? One
method is that a requesting device would makenitgue arbitration number available to
all other devices. Each device compares that numitlrits own arbitration number.
The device with the smaller number is always diseus Eventually, the requester with
the highest arbitration number will survive andgbanted bus access.

INPUT-OUTPUT INTERFACES

An interface is a data path between two separateekein a computer system.

Interface to buses can be classified based on theber of bits that are
transmitted at a given time to serial versus palrglbrts. In a serial port, only 1 bit of
data is transferred at a time. Mice and modemsuswally connected to serial ports. A
parallel port allows more than 1 bit of data topbpecessed at once. Printers are the most
common peripheral devices connected to parallgéspor

A summary of the variety of buses and interfacesluis personal computers:

74

Bus/Interface

Description

PS/2

A type of port (or interface) that can be usecbnnect mice and
keyboards to the computer. The PS/2 port is sonesticalled the
mouse port.

Industry standard
architecture (ISA)

ISA was originally an 8-bit bus and later expantted 16-bit bus
in 1984. In 1993, Intel and Microsoft introducegdlag and play
ISA bus that allowed the computer to automaticdéyect and set
up computer ISA peripherals such as a modem ordsoairtl.

Extended industry
standard
architecture

EISA is an enhanced form of ISA, which allows f@r3it data
transfers, while maintaining support for 8- andtlitexpansion
boards. However, its bus speed, like ISA, is onMHz. EISA is

(EISA) not widely used, due to its high cost and compdidatature.
Peripheral PCI was introduced by Intel in 1992, revised in3.8® version
component 2.0, and later revised in 1995 to PCI 2.1. It 8abit bus that is

interconnect (PCI)

also available as a 64-bit bus today. Many modgpa@sion
boards are connected to PCI slots.

Advanced graphic
port (AGP)

AGPwas introduced by Intel in 1997. AGP is a 32ki$ designec
for the high demands of 3D graphics. AGP has atimee to
memory, which allows 3D elements to be stored endystem
memory instead of the video memory. AGP is geavecitds datar
intensive graphics cards, such as 3D acceleratedesign allows
for data transfer at rates of 266 MB/s.

Universal serial
bus
(USB)

USB is an external bus developed by Intel, Compa£(;, IBM,
Microsoft, NEC and Northern Telcom. It was releaseti996 with
the Intel 430HX Triton Il Mother Board. USB has ttegpability of
transferring 12 Mbps, supporting up to 127 devidésny devices
can be connected to USB ports, which support phagpday.

75

